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ABSTRACTS: Beams have played a significant role in engineering applications and they have been 
commonly used for modelling civil problems. In fact, different models and methods have been developed 
to identify the damage to the beams. In this paper, the artificial neural network (ANN) model was developed 
to predict the location, width and depth of the saw-cut of steel beams by the change of natural frequencies. 
The natural frequencies of a steel beam in different scenarios were identified by the Finite Element Method 
(FEM). In order to validate the accuracy of FEM model, the natural frequencies of the steel beam in the case 
of no saw-cut determined by this model were compared with those determined by the Frequency Domain 
Decomposition (FDD) method. The results indicated that, the combination of FEM method, FDD method 
and ANN model would have great significance in structure health monitoring.

KEYWORDS: Crack prediction, ANN, natural frequency, Frequency Domain Decomposition, FEM 
dynamic analysis.

1. INTRODUCTION
Beams have played a significant role in 

engineering applications and they have been 
commonly used for modelling civil problems.  In 
fact, different models and methods have been 
developed to identify the damage to the beams. 
Yang XF [1] applied the Galerkin’s and energy 
method to identify the crack in vibrating beams. 
Swamidas ASJ [2] used Timoshenko and Euler 
formulation to determine the cracks in the beam. 
Gillich Gilbert-Rainer and Zhou Yun-Lai [3-5] 
detected the damage crack based on the vibration 
measurement. Zhou Yun-Lai [6] also studied the 
forced vibration of the cracked beam. The results of 
these studies demonstrated a good performance in 
structural damage detection.

In recent years, Artificial Neural Networks 
(ANNs) are becoming an efficient tool for predicting 
the damage within the structure. Lee Jong-Won [7] 
developed a technique to detect location and size 
of a through-the-thickness crack in straight thin-
walled pipe subjected to bending using the modal 
properties and ANN. Samir K [8] addressed the 
damage identification problem by means of a 
Genetic Algorithm (GA) approach based on the 
change of the natural frequency. Gowd B Prakruthi 
[9] proposed two algorithms of crack detection one 
using fuzzy logic (FL) and the other artificial neural 
networks (ANN). The artificial neural networks 
(ANN) and adaptive neuro-fuzzy inference systems 

(ANFIS) were also used to predict the size of 
the crack and its location based on the natural 
frequencies and frequency response functions  [10]. 
The natural frequencies used as inputs for ANN 
were also presented by Nazari F and Baghalian 
[11] and Rao Putti Srinivasa [12]. However, these 
studies almost have not mentioned the prediction 
of crack width and the position of the crack to be 
investigated has been evenly spaced. 

The use of eXtended Finite Element (XFEM) 
and eXtended IsoGeometric Analysis (XIGA) 
coupled with PSO and Jaya algorithm for predicting 
crack position and length in plates was presented by 
Khatir Samir [13]. Khatir Samir also [14] developed 
a two-stages approach based on normalized Modal 
Strain Energy Damage Indicator (nMSEDI). The 
result indicated that the Teaching Learning Based 
Optimization (TLBO) - Artificial Neural Network 
(ANN) - Particle Swarm Optimization (PSO) 
combined to IsoGeometric Analysis (IGA) could be 
used to determine correctly the severity of damage 
in beam structures. The ANN combined with PSO 
(ANN-PSO) was also investigated to predict the 
crack depth in pipeline structure based on modal 
analysis technique using Finite Element Method 
(FEM) [15]. Mortazavi SNS [16] developed a radial 
basis function artificial neural network (RBF-ANN) 
model to predict the fatigue crack growth, including 
the short and long crack regimes. The predictions 
showed that the RBF-ANN model has a good 
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interpolation capability to predict the nonlinearity 
of both short and long crack growth behavior. 
However, these studies almost have not mentioned 
the prediction of crack width and the position of 
the crack to be investigated is also evenly spaced. 
However, the width of the crack has not also been 
mentioned and the input data of these models were 
stress intensity factor range, stress ratio etc, these 
data are difficult quantities to measure in structure.

In this paper, the ANN model is developed to 
predict the location, width and depth of the saw-cut 
of steel beams by the change of natural frequencies. 
The natural frequencies of a steel beam in different 
scenarios are identified by the FEM model. In 
order to validate the accuracy of FEM model, the 
natural frequencies of the steel beam in the case of 
no saw-cut determined by this model are compared 
with those determined by the Frequency Domain 
Decomposition (FDD) method. Finally, conclusions 
are presented.

2. IDENTIFICATION OF NATURAL 
FREQUENCIES BY FREQUENCY DOMAIN 
DECOMPOSITION (FDD) AND FINITE 
ELEMENT (FEM) METHOD
2.1. Identification of natural frequencies of the 
steel beam by Frequency Domain Decomposition 
(FDD) 

Frequency domain decomposition is proposed 
by Brinker et al. [17]. This method decomposes 
the spectral density matrix at each frequency into 
singularity values and singularity vectors by the 
singular value decomposition (SVD). Frequency 
domain decomposition is an extension of the basic 
frequency domain technique or commonly known 
as the Pick Peaking technique, in which natural 
frequencies is identified by finding peaks in the 
spectral density matrix.

The relationship between unknown input x(t) 
and measured response output y(t) can be expressed 
as follows: 

*[ ( )] [ ( )] [ ( )][ ( )]T
yy xxG H G Hω ω ω ω=    (1)

Where: 
[ ( )]xxG ω  is the Power Spectral Density (PSD) 

matrix of the input;
[ ( )]yyG ω  is the PSD matrix of the responses;

*[ ( )]H ω  is the complex conjugate matrix of 

Frequency Response Function (FRF);
[ ( )]TH ω  is the transpose matrix of FRF.

The FRF can be written in prutial fraction:
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Where: n is the number of modes, λk is the pole 
of  the kth mode shape, σk is minus the real part of 
the pole and ωdk is the damped natural frequencies 
of the kth mode shape.

[Rk] is the residue expressed as follows.

   [R ]= . T
k k kφ γ            (4)

Where: φk is the mode shape vector, γk the modal 
participation vector.

Suppose the input is white noise, its power 
spectral density is constant or 

[ ( )]xxG ω  = C, (C is constant). Formula  is 
rewritten as follows:
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Multiplying the two partial fraction factors 
and making use of the Heaviside partial fraction 
theorem, after some mathematical manipulations, 
the output PSD can be reduced to a pole/residue 
form as follows:
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Where: [ ]kA is the thk residue matrix of the 
output PSD.

At a certain frequency ω only a limited number 
of modes will contribute significantly, typically one 
or two modes. Thus, in the case of a lightly damped 
structure, the response spectral density can always 
be written:
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Where: k ∈ Sub(ω) is the set of modes be denoted 
at a specific frequency, φk is the mode shape vector 
and λk is the pole of the kth mode shape.

The Frequency domain decomposition technique 
is based on the singular value decomposition of the 
Hermitian response spectral density matrix.

   [ ( )] [U][ ][U]H
yyG Sω =          (8)
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Where: [S] is a diagonal matrix holding 
the scalar singular values, [U] is a unitary  
matrix holding the singular vectors and [U]H is a 
Hermitian matrix.

From vibration measurement data of the 
structure (acceleration), we calculate the spectral 
density matrix [Gyy(ω)] and decompose the singular 
value according to formula (8) to determine the 
natural frequencies of the structure.

The test to obtain dynamic responses 
(acceleration) of steel beam structures at nodes 
over time. The result of vibration measurement 
is used to identify the natural frequencies of the 
structure. The physical parameters of the structure 
are shown in Table 1.  The equipment used in the 
test are NIcDAQ-9137 and two accelerameter (PCB 
352C68, PCB 353B33). Two accelerometer sensors 
to measure the vibration of the beam (Figure 2), 
the NIcDAQ-9137 connected with accelerometer 
sensors and display (Figure 1). Accelerometer 
measurements are collected and displayed through 
the NI Signal Express software pre-installed. 
Proceed with the installation and install parameters 
for measuring equipment, create vibration for the 
structure by any stimulus is large enough for the 
structure to work in the elastic stage. The measured 
data are recorded as the value of the acceleration 
over time at the location where the acceleration is 
mounted.

After measuring the vibration of the structure, 
acceleration at the nodes on the steel girder structure 

is obtained over time. The data of one measurement 
is shown in Figure 4 and Figure 5. With the 
acceleration data obtained from the experiment, 
calculate and estimate the power spectral density 
according to Welch’s estimation method and resolve 
the singularity values by SVD algorithm according 
to formula (8). We determine the natural frequencies 
of the structure corresponding to the positions of the 
maximum power spectral density function. Results 
of identifying the five natural frequencies are shown 
in Figure 3.

Test structure is a steel beam. The physical 
parameters of the structure are shown in Table 1.

Table 1. The physical parameters of the test 
structure

No Parameter Value Unit

1 Length 710 mm

2 Density weight 7850 Kg/m3

3 Modulus of elasticity 2.03x105 Mpa

4 Width 60 mm

5 Height 8 mm

After measuring the vibration of the structure, 
acceleration at the nodes on the steel girder structure 
is obtained over time. The data of measurements are 
shown in Figure 4.

With the acceleration data obtained from the 
experiment, calculate and estimate the power 

Figure 1. Experiment setup of the real structure

Figure 3. Results of acceleration of the beam

Figure 4. Power spectral density (PSD)

Figure 2. The position of the sensors
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spectral density according to Welch’s estimation 
method and resolve the singularity values by SVD 
algorithm according to formula (8). We determine the 
natural frequencies of the structure corresponding 
to the positions of the maximum power spectral 
density function. Results of identifying the five 
natural frequencies are shown in Figure 5.

Comparing the natural frequencies obtained by 
the FDD method and the results of the calculation of 
the natural frequencies by the experimental modal 
analysis (EMA) method are shown in the Table 2. 

Table 2. Comparison of natural frequencies 
between methods

No Mode FDD 
(Hz)

EMA 
(Hz)

Error 
(%)

Theory 
(Hz)

Error 
(%)

1 1 12.75 12.8 0.4 12.9 1.2

2 2 81.0 79.8 1.5 80.9 0.1

3 3 227.3 228.6 0.6 226.6 0.3

4 4 439.5 446.1 1.5 444 1.01

5 5 733.5 735.6 0.3 734 0.07

2.2. Identification of natural frequencies of the 
steel beam by Finite Element Method (FEM) 

A finite element model is generated in Abaqus 
using three-dimensional elastic beam elements 
(Figure 5). The beam is discretised into 34080 
elements. The model is showed close agreement 
with the measured responses (Table 3). 

In order to simulate the damage in the beam, the 
elements corresponding to the saw-cut are removed 
(Figure 6). The 219 damage scenarios are envisaged. 
In which, 214 scenarios (No. 1 to No.214) are used 

as training and validation data to build ANN model. 
The other 5 scenarios are used as testing data.  
Table 4 shows the damage scenario identification 
and the corresponding natural frequencies, which 
are developed by FEM. The additional appearance 
of Mode 3 in Table 4 is due to the fact that the FEM 
analysis model is three-dimensional, while in this 
experiment, we utilized a two-dimensional FDD 
model. However, in practice, it is possible to use 

Figure 5. Finite element model of beam

Table 3. The physical parameters of the test 
structure

No Frequency Domain 
Decomposition (Hz)

Finite element 
method (Hz)

Error 
(%)

1 12.75 12.99 1.91

2 81 81.4 0.50

3 227.3 227.83 0.23

Figure 6. Finite element model  
of saw – cut beam

Table 4. Database developed by FEA

No
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1 710.5 1 1 12.957 81.141 95.883 227.09

2 700.5 1 1 12.933 81.03 95.828 226.86

3 690.5 1 1 12.936 81.081 95.832 227.08

4 680.5 1 1 12.938 81.129 95.839 227.27

5 670.5 1 1 12.941 81.172 95.846 227.43

… … … … … … … …

72 710.5 1 2 12.866 80.586 95.569 225.57

73 700.5 1 2 12.783 80.19 95.33 224.76

74 690.5 1 2 12.791 80.355 95.328 225.45

75 680.5 1 2 12.800 80.508 95.349 226.05

76 670.5 1 2 12.808 80.649 95.374 226.56

… … … … … … … …

143 710 2 1 12.939 81.034 95.844 226.8

144 700 2 1 12.916 80.938 95.781 226.64

145 690 2 1 12.92 81.002 95.785 226.91

146 680 2 1 12.923 81.061 95.794 227.14

147 670 2 1 12.926 81.115 95.803 227.34

… … … … … … … …

215 75.5 1 1 13.002 81.407 96.043 227.75

216 75.5 1 2 13.005 81.403 96.068 227.57

217 76 2 1 13.005 81.413 96.068 227.74

218 405.5 1 1 12.987 81.245 95.984 227.69

219 602.5 1 1 12.956 81.369 95.892 227.82
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FDD to obtain all modes, similar to the FEM model. 
Table 5 shows ranges of variables in the database. 
These ranges are very important for prediction due 
to they imply the boundaries of the models.

Table 5. Ranges of variables in the database

No. Variable unit count min max

1 Location mm 219 0 710.5

2 width mm 219 0 2

3 depth mm 219 0 2

4 Mode 1 Hz 219 12.783 13.008

5 Mode 2 Hz 219 80.19 81.455

6 Mode 3 Hz 219 95.328 96.084

7 Mode 4 Hz 219 224.76 227.95

3. DEVELOPMENT OF THE ANN MODEL
The artificial neural network (ANN) models 

in this study have been developed with the aid of 
the software package PYTHON Version 3.11.0. 
Monitoring data includes natural frequencies and 
mode shapes; however, the mode shapes are not the 
number, so it is hard to normalize thus, the natural 
frequencies of four modes are chosen as input 
variables and the location, width, the depth of the 
saw - cut are selected as output variables.
3.1. Data division and preprocessing

The data have been divided into three subsets, 
training set for model calibration, validation set for 
model verification, and testing set. The testing set 
is completely random. The ratio of validation data 
to training data is 20%. It is consistent with the 
recommendation of author [18]. 

To make sure that all variables get equal attention 
during training, the preprocessing is conducted 
by scaling the input and output variables between 
0.0 and 1.0. The scaled value of each variable is 
calculated as follows:

  

min

max min
n

x xx
x x

−
=

−          
(9)

Where xmax and xmin are the maximum and 
minimum values of each variable x.
3.2. Model architecture, weight optimization and 
stopping criterion

The model geometry (i.e., the number of 
hidden layers, the number of hidden nodes in each 
layer) and weight optimization (i.e., learning rate 
and momentum term) are very important to the 
development of the ANN models.

Hornik, Stinchcombe [19] suggested that a 
network with one hidden layer can approximate 

any continuous function provided that sufficient 
connection weights are used. Thus, one hidden layer 
is used in this ANN model.

Transfer functions in the hidden and output 
layers are ReLU and Tanh, respectively. The 30000 
epochs (training cycles) are selected to terminate 
the training process. This number basically satisfies 
the requirement that the training loss at the end of 
the training process does not fluctuate and does not 
increase (Figure 8).

Figure 7 shows the effect of the number of 
hidden nodes on the performance of model. The 
model with 120 hidden nodes indicates the lowest 
prediction error (the lowest value of the mean square 
error and the highest value of the R squared). The 
number of hidden nodes using for ANN model in 
this paper is much more than the number of hidden 
nodes recommended by Caudill [20] before.

The learning rate is a tuning parameter in an 
optimization algorithm that determines the step size 
at each iteration while moving toward a minimum 
of a loss function [21]. Figure 9 depicts the effect 
of the learning rate on the performance of ANN 
models. It can be seen that the lowest prediction 

Figure 7. Effect of number of hidden layer nodes 
on performance of ANN model

Figure 8. Variation of loss against epoch
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error comes up with the learning rate of 0.0012. 
Adam optimizer is chosen for the gradient descent 
optimization algorithm. It already incorporates 
something like momentum; thus, the momentum 
term is not examined.

Figure 9. Effect of learning rate on performance 
of ANN model

3.3. Model validation and testing
After training, ANN model will be verified 

by the validation set. In the validation process, 
the R squared value, R2, is 0.8385, and the mean 

squared errors value, MSE, is 0.0097. These values 
basically are better than that during testing. In the 
testing process, the R squared value, R2, is 0.8244, 
and the mean squared errors value, MSE, is 0.0071. 
The explanation is that the data for validation are 
considered more principle than those used for 
testing process.

Figure 10 to Figure 12 show the performance of 
the ANN model for the location, the width and the 
depth of the saw - cut, respectively. It may be seen 
that the performance of the model for the position 
is the highest accuracy. The predicted values of the 
location of saw - cut have minimum scatter around 
the best fit line. It is possible that the training value 
of the location has better coverage than the rest. 
The value of the width and depth of the saw - cut is 
only 1mm or 2mm, so it could be confusing in the 
learning process of the model.

Table 6 shows the accuracy in predicting the 
location, the width and the depth of the saw - cut. 
The deviation between the measured value and 

Figure 12. Scatter plots of predicted versus 
measured data for the depth.

Table 6. Accuracy in predicting the saw - cut 
location of the model

Predetermined 
value (mm)

Predicted value 
(mm) Deviation (%)
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75.5 1 1 70.25 0.91 0.95 -6.96 -8.91 -4.83

75.5 1 2 85.68 1.32 1.70 13.48 32.42 -15.16

76 2 1 71.60 1.67 1.16 -5.79 -16.38 16.49

405.5 1 1 390.83 0.81 0.99 -3.62 -19.14 -1.36

602.5 1 1 608.77 0.80 0.98 1.04 -20.31 -1.51

Figure 10. Scatter plots of predicted versus 
measured data for the position

Figure 11. Scatter plots of predicted versus 
measured data for the width
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the predicted value of the saw - cut location is the 
smallest. The biggest deviation of location is 13.48% 
while the biggest deviation of width and depth is 
32.42% and 16.49%. This is also demonstrated by 
the R squared value. The R squared value for the 
location prediction of testing set is 0.9983. This value 
is bigger than the R squared value for the width and 
depth prediction (Figure 11, Figure 12). However, 
the model’s accuracy is not very high. This could 
be due to the fact that the test data is arbitrary and 
entirely new. To increase the model’s accuracy, we 
may need more training data or additional reliable 
independent variables.

4. CONCLUSIONS
After presenting how to determine natural 

frequency by frequency domain decomposition 
(FDD), using FEM method to generate data for 
ANN model and using ANN model to predict the 
location, the width and of the saw - cut of steel 
beams by the natural frequency, the main findings 
of this study were the following.

- The natural frequencies determined by the  
FDD method were consistent with those determined 
by the FEM method. Therefore, the natural 
frequencies of the structure over time could be 
exactly determined and reliably used as input 
parameters for ANN model to detect the damage 
saw - cut.

- The ANN model was capable of predicting 
the location, width, and depth of saw - cut in the 
beam by natural frequencies. The model predicted 
saw - cut location better than the other two values. 
However, the accuracy of the model was not so 
high. In order to increase the accuracy of the model, 
it may be needed more training data or more input 
reliable independent variables.

- The FEM method can be used to create a 
learning dataset at first or in the case of not 
enough monitoring data set. The combination 
of FEM method, FDD method and ANN 
model will have great significance in structure  
health monitoring. 
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