KEY CHANGES TO WIND LOAD PROVISIONS OF THE DRAFT TCVN 2737:202x

NGUYEN MANH CUONG^{a,*}, VU THANH TRUNG^a

^aVietnam Institute for Building Sicence and Technology ^{*}Corresponding author: *email: <u>nguyencuongibst@gmail.com</u> Article history: Received 18/2/2023, Revised 23/3/2023, Accepted 25/3/2023*

https://doi.org/10.59382/j-ibst.2023.en.vol1-6

Abstract: TCVN 2737:1995 Loads and Actions -Norm for Design [1] is the current Vietnamese design standard to determine the wind loads acting on the buildings & structures. This standard was prepared and officially issued in 1995, and has been effective until today (May 2023). Subsequently, two draft revisions related to wind loads were prepared in 2006 and 2009. The applications of design practices have demonstrated the limitations TCVN of 2737:1995.Therefore. Vietnam Ministrv of Construction has asked the Vietnam Institute for Building Science & Technology (IBST) to carefully revise TCVN 2737:1995 and to prepare the new TCVN 2737:202x to meet the present and future requirements for design of buildings and structures as well as to harmonise with the region and the world. Hence, the draft standard TCVN 2737:202x Loads and Actions has been prepared since 2017 and has been uploaded to the IBST website [3] to receive feedbacks and opinions from designers, engineers and experts. This draft is expected to be approved and officially published to replace the current standard TCVN 2737:1995. In the draft of this new standard, there are many contents, including wind load provisions. And this paper presents the key changes to wind load provisions of the new draft TCVN 2737:202x.

Key words: Wind loads, TCVN 2737, basic wind pressure, reference height, gust effect factor...

1. Introduction

Since TCVN 2737:1995 has been effective in engineering practices, there were 02 revisions related to wind loads:

- The first time (in 2006): updated the observed wind data to 2000 and added aerodynamic instability according to BS EN 1991-1-4:2005 standard but all formulas related to determination of the wind loads were kept as the originally in TCVN 2737:1995;

- The second time (in 2009) was compiled based

on SNIP 2.01.07-85*(2009)[8] and there was a change in topography (according to the topographic form of SNiP 2.01.07-85* (2009), but the basic wind speed was taken according to the B-shaped terrain, which is quite different from that in SNiP 2.01.07-85*(2009) – A type terrain). Furthermore, a key change in this revision is the utilization of 10-minute wind speed instead of the 3-second gust wind to determine wind pressures as adopted in TCVN 2737:1995. In addition, the results of wind load calculated according to this draft standard are also slightly smaller than those calculated according to TCVN 2737:1995. However, this draft standard has not been issueddue to the reasons mentioned.

The development of TCVN 2737:1995 for determining wind loads has some limitations, such as:

- In addition to standard SNiP 2.01.07-85(1989), some contents of Australian standards were used in TCVN 2737:1995. The combination may lead to a mismatch of the standard:

+ Changing the time of averaging wind speed from 10 minutes to 3 seconds (gust winds) while still using the formulas for calculating the static and dynamic component of SNIP 2.01.07-85(1989); Combined with the extension period from 5 years to 20 years will increase the standard value of wind load significantly compared to the original of SNIP 2.01.07-85(1989). In order to reduce this, TCVN 2737:1995 has reduced the values of some coefficients such as: reliability coefficient, dynamic pressure, pulse coefficient... However, those changes do not have basis;

+ The terrain used to determine basic wind speed in TCVN 2737:1995 and SNIP 2.01.07-85(1989) is also different: The terrain type of Russian standard is terrain type A but the terrain type of TCVN 2737:1995 is type B (the same with TCVN

2737:1990).

On the other hand, the current standard lacks regulations on wind tunnel test for high-rise buildings, buildings with complex shapes, aerodynamic instability, hurman comfort, effects of wind with neighboring buildings...

As previously stated, TCVN 2737:202x is expected to replace [1], and is currently on the IBST website to seek opinions and feedbacks before officially approved for publication. Compared with the 1995 version, the 202x version has had some key changes, of which the biggest changes are in the load combinations and the calculation of wind loads acting on the buildings & structures including the aerodynamic (shape) pressure coefficients. This paper presents the key changes related to the calculate wind loads acting on the buildings.

2. Key changes to wind load provisions

The first change to be mentioned is the addition of "limit of application" provision. At Point 10.1.1[2], it is prescribed: "Applicable to buildings with a height of up to 200 m and span not greater than 150 m". Thus, if [1] does not specify the limit of application, the user can apply it to calculate the wind load without being limited by the scale and grade of the buildings, then when applying [2] for the buildings that are not within the specified range, the calculation will be done by alternative methods. Practical studies and experiments show that calculating wind loads on super high-rise buildings using theoretical formulas is no longer appropriate; Therefore, the introduction of a limit like Point 10.1.1[2] is necessary and is also consistent with other foreign standard systems such as Eurocode, ASCE...

The next change is that [2] has adjusted and supplemented the aerodynamic coefficient factor, c, for some types of buildings in Appendix F, and at the same time issued the provisions: "For cases not mentioned in Appendix F (other shapes of the building, consideration of other directions of wind flow or consideration of the total resistance components of the object in other directions, the need to take into account the influence of neighboring buildings and structures, terrain and the like), then it is necessary to consider the aerodynamic coefficient according to specialized technical documents or wind tunnel test" – Point 10.2.7[2].

Another change is the introduction of "reference height, z_e ", which is defined as follows:

a) Towers, piers, tubes, hollow structures and the like: $z_e = z$,

b) Buildings
1) For
$$h \le b$$
: $z_e = h$
2) For $b < h \le 2b$
 $z > b$: $z_e = h$
 $0 < z \le b$: $z_e = b$
3) For $h > 2b$
 $z \ge h - b$: $z_e = h$
 $b < z < h - b$: $z_e = z$
 $0 < z \le b$: $z_e = b$

[2] also change the formula to calculate the value of the coefficient, $k(z_e)$, that takes into account the change of wind pressure according to the reference height, z_e , compared to the gradient height, z_g , and terrain type:

$$k(z_e) = 2.01 \left(\frac{z_e}{z_g}\right)^{2/\alpha}$$
 (Eq (12)[2])

 $(k(z_e)$ is taken not more than 1,99, 1,97 và 1,98 for the terrain types A, B and C respectively);

(z_e is taken not less than z_{min} specified in Table 8[2]).

Thus, if [1] the coefficient taking into account the change in wind pressure with height "k" is determined according to the corresponding height (z), then to [2] has been replaced by the calculation with the reference height (z_e) – Depends on the size of the windward surface. The source of this adjustment is based on SP 20.13330.2016 as well as EN 1991-1-4 and is consistent with the above aerodynamic coefficient adjustment. Equation (12)[2] is derived from 26.10-1 of ASCE/SEI 7-16. When calculating work according to this formula, the value of k increases compared to the calculated value according to [1] – The difference increases with height; at 200m, it increases about 10% for terrain type B and 11% for terrain types A and C.

The fourth change is the change in the calculation of the dynamic component of the wind loads:

TCVN 2737:1995	TCVN 2737:202x
Separation of static and dynamic components ($W = W_t + W_d$)	The dynamic component is calculated together with the static component by the gust effect coefficient, <i>Gr.</i> Gust effect coefficient is used in almost foreign standard such as: ASCE/SEI 7- 16, BS EN 1991-1-4:2005
The calculation of the dynamic component is divided into many different situations according to the frequency of the building and the limit value, F_L . In many cases, high-order oscillations must be considered, the calculation is quite complicated.	The calculation needs to consider the frequency value of the first mode (n_1) only. In addition, Appendix E (reference) provides some simple formulas to calculate the Gust factor for the buildings.

The Gust effect coefficient in [2] is derived from the basis of 26.11.5 ASCE/SEI 7-16. The Gust effect coefficient, Gf, is the response coefficient of the structure under the action of wind loads (including the static response component (wind

$$G_{f} = 0,925 \left(\frac{1 + 1,7I(z_{s})\sqrt{g_{Q}^{2}Q^{2} + g_{R}^{2}R^{2}}}{1 + 1,7g_{v}I(z_{s})} \right)$$

where:

- $l(z_s)$ is the turbulence intensity at the equivalent height of the structure z_s - taken as 0,6h;

$$I(z_s) = c_r \left(\frac{10}{z_s}\right)^{1/6}$$
 (Eq (14)[2])

- C_r is the coefficient depending on the terrain type, determined according to Table 10[2].

Thus, TCVN 2737:202x has added wind speed profile and turbulence profile, providing a basis for testing the aerodynamic bellows model.

The fifth change is the change of the input basic wind speed. The inlet wind velocity in [1] is the average wind speed for 3 seconds, repeat period of 20 years; in [2] is still average wind speed for 3 seconds but repeat period is 10 years.

With the above changes, the standard value of the wind load, W_k , at the reference height, z_e , is determined by the formula:

$$W_k = W_{3s,10} * k(z_e) * c * G_f$$

impulse) and dynamic response component, resonance). For "rigid" structures (with first self period $T_1 \le 1$ s), G_f can be taken as 0,85; For "soft" structures (with first self period $T_1 > 1$ s), G_f is determined by the formula:

(Eq (13)[2])

Other major differences are that TCVN 2737:202x has given the importance factor of wind load, γ_f (for the main wind load, γ_f is taken as 2,1) and the importance factor of the building, $\gamma_{n,}$ according to levels C1, C2, C3 (Appendix H) – Corresponding to risk levels in Regulation No.03 (QCVN 03: 2022).

3. Wind load calculation to buildings

Carry out three examples of wind load calculation according to the draft TCVN 2737:202x and TCVN 2737:1995 for assumed buildings:

- Building No.1: Plan BxL=5x15 (m), 5 storey (height of storey 3,6 m);

- Building No.2: PlanBxL=24x24 (m), 15 storey (height of storey 3,2 m);

- Building No.3: Plan BxL=30x82 (m), 29 storey (height of storey 3,6 m).

(Wind zone IIB, terrain type B)

The results of wind load calculation and comparison are summarized in the following tables (for details see the attached appendix):

								-	
Story	z	F _{k(2x)}	(daN)	F _{k(95)}	(daN)	γ'n	γı	$\gamma_n \gamma_f F_{k(2x)}$	/ F _{k(95)}
Otol y	-	Bref	D _{ref}	Bref	D _{ref}	711	7	Bref	Dref
1	3,6	1651	6813	2390	7169	1,00	2,10	1,45	2,00
2	7,2	1783	6813	2707	8121	1,00	2,10	1,38	1,76
3	10,8	1942	6813	2912	8736	1,00	2,10	1,40	1,64
4	14,4	2162	6813	3067	9200	1,00	2,10	1,48	1,56
5	18,0	1081	3540	1596	4789	1,00	2,10	1,42	1,55

Table 1. Calculation results of wind load on building No.1

(Eq (10)[2])

Journal of Building Science and Technology - No. 1/2023

Story	z	F _{k(2x)}	(daN)	F _{k(95)}	(daN)	γ'n	γf	γ _n γ _f F _{k(2x)}	/ F _{k(95)}
	-	B _{ref}	D _{ref}	B _{ref}	D _{ref}	,	<i>,</i> ,	B _{ref}	Dref
			<i>γ_nγ_f</i> ∑F _{Ki (2}	_{2x) /} ∑F _{Ki (95) =}				1,43	1,70
			γ _n γ _f ∑z _i F _{Ki (}	2x) / ∑ZiF _{Ki (95) =}				1,43	1,63

Story	z	F _{k(2x)}	(daN)	F _{k(95)}	(daN)	17	0/6	γ _n γ _T F _{k(2.}	_{x)} / F _{k(95)}
Oldry	-	Bref	Dref	Bref	Dref	Ϋ́n	Yf	Bref	Dref
1	3,2	10100	10100	10996	10860	1,00	2,10	1,93	1,95
2	6,4	10100	10100	13337	13065	1,00	2,10	1,59	1,62
3	9,6	10100	10100	15208	14799	1,00	2,10	1,39	1,43
4	12,8	10100	10100	16869	16324	1,00	2,10	1,26	1,30
5	16,0	10100	10100	18408	17289	1,00	2,10	1,15	1,23
6	19,2	10100	10100	19868	18173	1,00	2,10	1,07	1,17
7	22,4	10100	10100	21270	19439	1,00	2,10	1,00	1,09
8	25,6	11686	11686	22122	20662	1,00	2,10	1,11	1,19
9	28,8	11686	11686	22940	21852	1,00	2,10	1,07	1,12
10	32,0	11686	11686	23732	23014	1,00	2,10	1,03	1,07
11	35,2	11686	11686	24602	24154	1,00	2,10	1,00	1,02
12	38,4	11686	11686	25758	25276	1,00	2,10	0,95	0,97
13	41,6	11686	11686	26999	26381	1,00	2,10	0,91	0,93
14	44,8	11686	11686	28227	27473	1,00	2,10	0,87	0,89
15	48,0	5843	5843	14721	14276	1,00	2,10	0,83	0,86
			γ _n γ _f ∑F _{Ki (2x}	.) / ∑ F Ki (95) ₌	=			1,09	1,13
)		κ) / ∑ZiFκi (95				1,00	1,03

Table 2. Calculation results of wind load on building No.2

Table 3. Calculatio	n results of wind	l load on building No.3

Story	z	F _{k(2x)}	(daN)	F _{k(95}) (daN)	24	46	$\gamma_n \gamma_f \mathbf{F}_{k(2)}$	() / F _{k(95)}
Story	2	Bref	Dref	Bref	Dref	γ'n	Yî	Bref	Dref
1	3,6	14489	53037	16887	46350	1,15	2,10	2,07	2,76
2	7,2	14489	53037	19927	54142	1,15	2,10	1,76	2,37
3	10,8	14489	53037	22039	59722	1,15	2,10	1,59	2,14
4	14,4	14489	53037	23825	64367	1,15	2,10	1,47	1,99
5	18,0	14489	53037	25785	68730	1,15	2,10	1,36	1,86
6	21,6	14489	53037	27705	74257	1,15	2,10	1,26	1,72
7	25,2	14489	53037	28927	77873	1,15	2,10	1,21	1,64
8	28,8	14489	53037	30242	80995	1,15	2,10	1,16	1,58
9	32,4	14726	53037	31382	84142	1,15	2,10	1,13	1,52
10	36,0	15056	53037	32452	87040	1,15	2,10	1,12	1,47
11	39,6	15361	53037	33463	89539	1,15	2,10	1,11	1,43
12	43,2	15645	53037	34521	92415	1,15	2,10	1,09	1,39
13	46,8	15911	53037	35443	94911	1,15	2,10	1,08	1,35
14	50,4	16161	53037	36331	97316	1,15	2,10	1,07	1,32
15	54,0	16397	53037	37209	99653	1,15	2,10	1,06	1,29
16	57,6	16622	53037	38083	101950	1,15	2,10	1,05	1,26

Story	z	F _{k(2x)}	(daN)	F _{k(95}	ij (daN)	24	0%	$\gamma_n \gamma_f \mathbf{F}_{k(2)}$	_{k)} / F _{k(95)}
Story	2	B _{ref}	D _{ref}	B _{ref}	D _{ref}	γ'n	Yf	Bref	D _{ref}
17	61,2	16835	53037	38948	104231	1,15	2,10	1,04	1,23
18	64,8	17039	53037	39824	106520	1,15	2,10	1,03	1,20
19	68,4	17234	53037	40600	108850	1,15	2,10	1,03	1,18
20	72,0	17421	53037	41389	111231	1,15	2,10	1,02	1,15
21	75,6	18839	53037	42194	113676	1,15	2,10	1,08	1,13
22	79,2	18839	53037	43014	116185	1,15	2,10	1,06	1,10
23	82,8	18839	55803	43735	118458	1,15	2,10	1,04	1,14
24	86,4	18839	55803	44468	120783	1,15	2,10	1,02	1,12
25	90,0	18839	55803	45319	123167	1,15	2,10	1,00	1,09
26	93,6	18839	55803	45952	125894	1,15	2,10	0,99	1,07
27	97,2	18839	55803	46693	128047	1,15	2,10	0,97	1,05
28	100,8	18839	55803	47433	129040	1,15	2,10	0,96	1,04
29	104,4	9419	27902	24166	65462	1,15	2,10	0,94	1,03
			<i>γ_nγ_f</i> ∑F _{Ki (2}	x) / ∑F _{Ki (95)}	=			1,12	1,35
				x) / ∑ZiFкi (9				1,04	1,20

Comments:

- Through the introduction and examples above, it shows that the calculate wind loads effect on the high-rise building according to TCVN 2737:202x is easier to use than TCVN 2737:1995;

- The Gust factor calculated according to Appendix E (reference) has a significant difference compared to the calculation by Eq(13)[2] for high-rise buildings;

- In terms of value, through the examples above, it shows the results (Loads acting on each floor, $\gamma_n\gamma_f F_{\kappa}$; Total moment and bottom shear, $\gamma_n\gamma_f \sum ziF_{\kappa i}$ and $\gamma_n\gamma_f \sum F_{\kappa i}$) according to TCVN 2737:202x giving larger value than calculated according to TCVN 2737:1995;

- Changing the formula for calculating the coefficient k and the reference height, z_e , instead of the height z as in [1] are one of the reasons for the change in the results:

+ At examples 1 and 2: The building with a ratio of the size of the windward area (height / width) is small, the change is quite obvious, especially on the floors below;

+ For long-shaped buildings, the wind load effect in the direction perpendicular to the plane of the long side is greater than other side due to the proportional relationship of the height and width.

4. Conclusions

- This paper presents the key changes to wind

load provisions in the draft standard TCVN 2737:202x compared to the wind loads determined based on TCVN 2737:1995, and also introduces some specific examples to compare and evaluate the wind load results;

- The use of wind gust effect factor, G_f , and calculation principle similar to foreign standards (ASCE 7-16) help design engineers to easily prepare spreadsheets or software program or to attach into the commercial structural analysis softwares such as SAP 2000 or ETABS;

- With high-rise buildings, gust effect factor, G_f, calculated according to Appendix E (reference) – [2] has a difference compared to calculated value usingequation (13)[2], so it is recommended to determine G_f by formula (13) of the draft standard [2].

REFERENCES

- [1] TCVN 2737: 1995, Loads and Actions Norm for design.
- [2] TCVN 2737: 202x, Loads and Actions.
- [3] <u>http://www.ibst.vn/thong-bao/moi-gop-y-du-</u>thao-tieuchuan-tcvn-2737-20xx-.ht.
- [4] QCVN 03:2022, National Technical Regulation on Clasificasions of Buildings and Structure for design.
- [5] TCVN 2737: 1990, Loads and Actions Norm for design.
- [6] Eurocode 1: Actions on Structures Part 1-4: General Actions – Wind Actions.
- [7] ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
- [8] SP 20.13330.2016, Loads and Actions.

ANNE	ANNEX: A.1																									
RESUL	RESULTS CALCULATED WIND LOADS ACTION ON BUILDING 1 (BASE ON TCVN	ULATED	MIND L	OADS A	NCTION	ON BUIL	DING 1	(BASE (IN TCV	N 2737:202X)	02X)															
W ₀ (daN)	V _{3s,50} (m/s)	Terrain	(<i>m</i>) d	d (m)	(m) h	(zH) dt	n _{1d} (Hz)	g R(b)	g R(d)	ป	$C_{(B)}$	C _(D)	l(Zs)	L(Zs)	V(Z _s) _{3600s,50}	00s,50										
95,0	43,1	œ	5,0	15,0	18,0	2,00	2,00	4,352	4,352	0,02	1,31	1,43	0,517	154,8	28,4	4										
Story	Dim	Dimensions (m)	(<i>m</i>)	Ze	8	K(Z _e)		ġ	Ø	-	R		R		R_{b}		Rd		R		G,	2	W _k (daN/m2)		F _{k(2x)} (daN)	Ń
	B	a	Ζ	B _{ref}	D ref	B _{ref}	D ref	(duick)	B ref	D ref	B _{ref}	D _{ref}	B ref	D ref	B _{ref}	D ref	B _{ref} 1	D _{ref} B	B _{ref} D	D _{ref} B ₁	Bref Dref		Bref Dref	ef Bref		D ref
-	5,0	15,0	3,6	5,0	15,0	0,87	1,09	0,86	0,92	0,90	0,03	0,03	0,16	0,16	0,43	0,43	0,18	0,18 (0,25 0	0,25 0	0,91 0,	0,89 9	91,7 1	126 1	1651 (6813
2	5,0	15,0	7,2	7,2	15,0	0,93	1,09	0,86	0,92	0,90	0,03	0,03	0,16	0,16	0,43	0,43	0,18	0,18 (0,25 0	0,25 0	0,91 0,	0,89 99	99,0	126 1	1783 (6813
e	5,0	15,0	10,8	10,8	15,0	1,02	1,09	0,86	0,92	0,90	0,03	0,03	0,16	0,16	0,43	0,43	0,18	0,18	0,25 0	0,25 0	0,91 0,	0,89 10	107,9 1	126 1	1942 (6813
4	5,0	15,0	14,4	18,0	15,0	1,13	1,09	0,86	0,92	0,90	0,03	0,03	0,16	0,16	0,43	0,43	0,18	0,18 (0,25 0	0,25 0	0,91 0,	0,89 12(120,1 1	126 2	2162 (6813
5	5,0	15,0	18,0	18,0	18,0	1,13	1,13	0,86	0,92	0,90	0,03	0,03	0,16	0,16	0,43	0,43	0,18	0,18 (0,25 0	0,25 0	0,91 0,	0,89 12(120,1 131,1		1081	3540
RESUL	RESULTS CALCULATED WIND LOADS EFFECT TO BUILDING 1 (BASE ON TCVN	ULATED	MIND L	OADS E	FFECT	TO BUIL	DING 1	(BASE (IN TCVI	N 2737:1995)	995)															
W ₀ (daN)	Terrain	C _(B)	C _(D)	γ	v (B)	v (D)	f _{1b} (Hz)	f _{2b} (Hz)	f 1d (Hz)	f _{2d} (Hz)	€ _{1b}	5 2b	5 1d	5 2d	<i>چ 1</i> b	ξ 2b	5 1d 9	€ 1d 4	Ψ _{1b} Ψ	Ψ 2b Ψ	₩1d ₩	W 2d				
95,0	۵	1,40	1,40	1,20																						
Ì		Dimensions (m)	(m)			W _{ac} (daN)	daN)	тĸ	yk (B _{ref})	ref)	yk (D _{ref})	ref)		y _k W _{pk} (daN)	(daN)		Y	y _k ² m _K (daN)	(Ne		2	W _{dtc} (daN)	()	F	F _{k(95)} (daN)	2
Story	B	D	z	×	Ś	B ref	D _{ref} ((daN.s2/ m)	mode1	mode2	mode1 mode2 mode1 mode1 ^{mode 1}	node2		mode 2 mode 1 B _{ref} D _{ref}	D _{ref}	D _{ref}	mode n 1 B _{ref} 2	mode m 2 B _{ref} 1	mode mo 1 D _{ref} 2 L	mode mo 2 D _{ref} 1 E	mode mo 1 B _{ref} 2 B	mode mo 2 B _{ref} 1 D	mode mode 2 1 D _{ref} D _{ref}	e 2 Bref		D ref
-	5,0	15,0	3,6	0,83	0,53	1991	5974																		2390	7169
2	5,0	15,0	7,2	0,94	0,50	2256	6768																	2	2707	8121
e	5,0	15,0	10,8	1,01	0,48	2427	7280																	0	2912	8736
4	5,0	15,0	14,4	1,07	0,47	2556	7667																	3	3067	9200
5	5,0	15,0	18,0	1,11	0,46	1330	3991																	-	1596	4789

Journal of Building Science and Technology - No.1/2023

2 2	Terrai b (m) n	q (m)	(m) h	n 1b (HZ)	n _{1d} (Hz)	g R(b)	g R(d)	e.	C ^(B)	 C	l(Z _s)	L(Zs)	V(Z s) 3600s,50	00s,50									
m	30,0	82,0	104,4	0,25	0,32	3,848	3,905	0,02	1,31	1,42 0	0,694 2	220,0	37,2										
S	Dimensions (m)	N	Ze	K(Z e)		ġ	Ø		R		R		R		Rd		æ		Ğ	W	W _k (daN/m2)	$\mathbf{F}_{\mathbf{k}(2\mathbf{x})}$	(daN)
Q	Z	B ref	D _{ref}	B ref	D _{ref}	(quick)	B _{ref}	D _{ref}	B _{ref}	Dref	B _{ref}	D _{ref}	B _{ref}	D _{ref}	Bref [D _{ref} B	D	ref B ref	f D _{ref}	ef B ref	f D _{ref}	B ref	Dref
00	82,0 3,6	6 30,0		1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,	59 1,0	,05 0,	0,96 134,	N	7 14489	53037
~	82,0 7,2	2 30,0	82,0	1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,	59 1,0	1,05 0,	0,96 134,	1,2 179,	7 14489	53037
8	82,0 10,8	30,0	82,0	1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	,05 0,	0,96 134,	1,2 179,7	7 14489	53037
8	82,0 14,4	1 30,0	82,0	1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0;	0,96 134,2	t,2 179,7	7 14489	53037
8	82,0 18,0	30,0	82,0	1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0,	0,96 134,2	t,2 179,7	7 14489	53037
80	82,0 21,6	30,0	82,0	1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,	59 1,0	1,05 0,	0,96 134,2	1,2 179,7	7 14489	53037
8	82,0 25,2	2 30,0	82,0	1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0;	0,96 134,2	t,2 179,7	7 14489	53037
8	82,0 28,8	30,0	82,0	1,26	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0,	0,96 134,	t,2 179,7	7 14489	53037
8	82,0 32,4	1 32,4	82,0	1,28	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0,	0,96 136,3	5,3 179,7	7 14726	53037
8	82,0 36,0	36,0	82,0	1,31	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,05		0,96 139,4	9,4 179,7	7 15056	53037
8	82,0 39,6	39,6	82,0	1,34	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,05		0,96 142,2	2,2 179,7	7 15361	1 53037
8	82,0 43,2	2 43,2	82,0	1,36	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,05		0,96 144,9	t,9 179,7	7 15645	5 53037
8	82,0 46,8	3 46,8	82,0	1,39	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,0	1,05 0;	0,96 147,	7,3 179,7	7 15911	1 53037
80	82,0 50,4	1 50,4	82,0	1,41	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,05		0,96 149,6	9,6 179,7	7 16161	1 53037
8	82,0 54,0	54,0	82,0	1,43	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,05		0,96 151,	1,8 179,7	7 16397	7 53037
80	82,0 57,6	57,6	82,0	1,45	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,8	0,59 1,05		0,96 153,9	3,9 179,7	7 16622	2 53037
8	82,0 61,2	2 61,2	82,0	1,47	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,05		0,96 155,9	5,9 179,7	7 16835	5 53037
ø	82,0 64,8	64,8	82,0	1,48	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0;	0,96 157	7,8 179,7	7 17039	5303
00	82,0 68,4	4 68,4	82,0	1,50	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0;	0,96 159,6	9,6 179,7	7 17234	1 53037
80	82,0 72,0	72,0	82,0	1,52	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0;	0,96 161,	1,3 179,	7 17421	1 5303
8	82,0 75,6	5 104,4	82,0	1,64	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,05		0,96 174,	1,4 179,7	7 18839	5303
8	82,0 79,2	2 104,4	82,0	1,64	1,56	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,	59 1,0	1,05 0,	0,96 174,4	179,7	7 18839	5303
00	82,0 82,8	3 104,4	104,4	1,64	1,64	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,	59 1,0	1,05 0;	,96 174,4	1,4 189,0	0 18839	9 55803
8	82,0 86,4	104,4	104,4	1,64	1,64	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0,	,96 174,4	189,0	0 18839	9 55803
80	82,0 90,0	104,4	104,4	1,64	1,64	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	59 1,0	1,05 0;	,96 174,4	1,4 189,0	0 18839	55800
30,0 8	82,0 93,6	5 104,4	104,4	1,64	1,64	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,9	59 1,0	1,05 0;	0,96 174,4	1,4 189,0	0 18839	55800
30,0 8	82,0 97,2	2 104,4	104,4	1,64	1,64	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,	59 1,0	1,05 0;	0,96 174,4	1,4 189,0	0 18839	5580
8	82,0 100,8	3 104,4	104,4	1,64	1,64	0,89	0,83	0,80	0,11	0,09	0,26	0,22	0,59	0,52	0,31	0,26 0	0,74 0,6	0,59 1,0	1,05 0,	0,96 174,	189,0	0 18839	9 55800
0 00																							

\mathbf{F}_{14} \mathbf{E}_{24} $\mathbf{\tilde{f}}_{14}$ $\mathbf{\tilde{f}}_{14}$ \mathbf{W}_{14} \mathbf{W}_{24} \mathbf{W}_{25} <th>8 -1119 43014 0 -2544 43735</th> <th></th> <th>43014</th> <th>3735</th> <th>44468</th> <th>319 123167</th> <th>125894</th> <th>3 128047</th> <th>129040 66460</th>	8 -1119 43014 0 -2544 43735		43014	3735	44468	319 123167	125894	3 128047	129040 66460						
Ear $\tilde{\zeta}$ 1b $\tilde{\zeta}$ 2b $\tilde{\zeta}$ 1d $\tilde{\psi}$ 1d ψ 2a ψ 2a 0.0035 1.90 1.42 1.98 1.44 170 48 -447 -140 7 0.0035 1.90 1.42 1.98 1.44 170 48 -447 -140 7 0.0035 1.90 1.42 1.98 1.44 170 48 -447 -140 7 0.0035 1.900 1.42 1.98 1.44 170 48 -447 -140 7 0.00577 -0.02819 0.17822 0.00001 0.0003 0.0014 1.0042 10461 7 446 244 0.0517 -0.02819 0.17826 0.00018 0.00018 0.00013 0.0014 1.0042 10461 10452 10461 10452 10461 10452 10461 10452 10461 10452 10461 10452 10461 10452 10461 10452 1146 11795 <t< th=""><th></th><th>2 7</th><th></th><th>4</th><th>44</th><th>45319</th><th>45952</th><th>46693</th><th>47433 24166</th></t<>		2 7		4	44	45319	45952	46693	47433 24166						
Ear \tilde{f} 1b \tilde{f} 2b \tilde{f} 1d \tilde{f} 1d W 1d W 2d W 2d 0,035 1,90 1,42 1,98 1,44 170 48 W 1d W 2d 0,035 1,90 1,42 1,98 1,44 170 48 W 1d W 2d 0,035 1,90 1,422 1,98 1,44 170 48 W 1d W 2d 0,035 1,90 1,422 1,98 1,44 170 48 W 1d W 2d 0,035 0,1410 0,1822 0,0000 00000 00000 00001 00003 00041 00641 0668 0,05231 0,11410 0,53930 0,00000 000000 00003 00031 00641 0668 0,05336 0,11410 0,53931 0,00000 000031 000031 00031 00041 0044 044 044 044 044 044 044 044 044 044 044	80		-1119	-2544	-3917	-5342	-6766	-8140	-9462 5600						
\mathcal{E}_{2d} $\tilde{\mathcal{F}}_{1}$ $\tilde{\mathcal{F}}_{2}$ $\tilde{\mathcal{F}}_$	2781 2893	26483	27818	28930	30043	31156	32491	33381	33381 16012						
\mathcal{E}_{2ad} \mathcal{J}_{7} \mathcal{J}_{7} \mathcal{J}_{7} \mathcal{W}_{7b} \mathcal{W}_{7b} \mathcal{W}_{7d} 0,035 1,900 1,42 1,98 1,44 170 48 -447 \mathbf{V}_{A} \mathbf{M}_{Ph} \mathbf{J}_{1} \mathbf{J}_{1} \mathbf{J}_{1} \mathbf{M}_{2b} \mathcal{W}_{1d} \mathbf{V}_{A} \mathbf{M}_{Ph} \mathbf{J}_{1} \mathbf{J}_{2} \mathbf{J}_{1} \mathbf{M}_{1d} \mathbf{M}_{1d} \mathbf{M}_{ad} \mathbf{D}_{adr} \mathbf{D}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{1d} \mathbf{M}_{adr} \mathbf{D}_{adr} \mathbf{D}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{D}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{D}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{M}_{adr} \mathbf{D}_{adr} \mathbf{M}_{adr}	-698 -1124					-1976	-2368	-2743	-3101						
\mathcal{E}_{2d} $\tilde{\mathcal{F}}_{1D}$ $\tilde{\mathcal{F}}_{2D}$ $\tilde{\mathcal{F}}_{1d}$ \mathcal{W}_{1d} \mathcal{W}_{2b} 0,035 1,90 1,42 1,98 1,44 170 48 $\mathbf{Y}_{k} W_{pk}$ \mathcal{I}_{mod} 1,42 1,98 1,44 170 48 $\mathbf{Y}_{k} W_{pk}$ \mathcal{I}_{mod} \mathbf{M}_{md} \mathbf{M}_{md} \mathbf{M}_{md} \mathbf{M}_{md} \mathbf{M}_{mod} \mathbf{M}_{md} <	10533 10857	10128	10533	10857	11181	11586	11829	12153	12477 6444						
\mathcal{E}_{2d} $\tilde{\mathcal{F}}_{1}$ $\tilde{\mathcal{F}}_{2}$ $\tilde{\mathcal{F}}_{2}$ $\tilde{\mathcal{F}}_{1}$ \mathcal{W}_{1} \mathcal{W}_{1} 0,035 1,90 1,42 1,98 1,44 170 \mathbf{Y}_{k} \mathbf{M}_{pk} \mathbf{M}_{pk} \mathbf{M}_{nk} \mathbf{M}_{nk} \mathbf{Y}_{k} \mathbf{M}_{pk} \mathbf{M}_{nk} $\mathbf M}_{nk}$ <th></th> <th>0,00001</th> <th>0,00012</th> <th></th> <th></th> <th></th> <th> </th> <th></th> <th></th>		0,00001	0,00012												
\mathcal{E}_{2d} $\overset{c}{\mathcal{F}} Tb$ $\mathcal{P}_{R} W_{pk}$ $\overset{c}{\mathcal{F}} Tb$ 0,035 1,90 $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} 0.0527$ 0.02819 $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ \mathbf{n}_{od	0,00393 0,00012 0,00425 0,00063	0,00356	0,00393	0,00425	0,00458	0,00493	0,00536	0,00566	0,00566						
\mathcal{E}_{2d} $\overset{c}{\mathcal{F}} Tb$ $\mathcal{P}_{R} W_{pk}$ $\overset{c}{\mathcal{F}} Tb$ 0,035 1,90 $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} 0.0527$ 0.02819 $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ \mathbf{n}_{od	0,00042 (0,00110 (0,00042	0,00110	0,00208	0,00338 (0,00486	0,00652 (0,00833						
\mathcal{E}_{2d} $\overset{c}{\mathcal{F}} Tb$ $\mathcal{P}_{R} W_{pk}$ $\overset{c}{\mathcal{F}} Tb$ 0,035 1,90 $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} 0.0527$ 0.02819 $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ \mathbf{n}_{od),00425 (),00452 (00393	0,00425	,00452 (0,00479 (0,00514 0	0,00536	,00566 (0,00596						
\mathcal{E}_{2d} $\overset{c}{\mathcal{F}} Tb$ $\mathcal{P}_{R} W_{pk}$ $\overset{c}{\mathcal{F}} Tb$ 0,035 1,90 $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} W_{pk}$ (daN) $\mathbf{y}_{R} 0.0527$ 0.02819 $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ $\mathbf{n}_{ode} 1$ $\mathbf{n}_{ode} 2$ \mathbf{n}_{od	0.27301 0.00425 0.00042 0.00393 0.00012 0.62297 0.00452 0.00110 0.00425 0.00063	-0,06179	0,27301	0,62297 (0,96306 0,00479 0,00208 0,00458 0,00149	1,31810 0,00514 0,00338 0,00493 0,00277	1,67550 0,00536 0,00486 0,00536 0,00445	2,02249 0,00566 0,00652 0,00566 0,00644	0,76745 -0,90699 -1,90230 2,35886 0,00596 0,00333 0,00566 0,00870						
	-1,55122 -1,61973	-1,47059	-1,55122	-1,61973	-1,68848	-1,75747	-1,83927	-0,79971 -1,89609	-0,90699 -1,90230						
e14 122 122 122 122 122 122 122 122 122 1	-0,19993 -0,32314	-0,07284	-0,19993	-0,32314	-0,44725	-0,57221	-0,68809 -1,83927		-0,90699						
	0,63394 0,65606	0,60701	0,63394	0,65606	0,67824	0,70540	0,72275	0,74507	0,76745						
ε _{2b} 0,033 rest) rest) 0,033 rest) rest) 0,0006 -0,00001 -0,00013 -0,00014 -0,00015 -0,00015 -0,00016 -0,00015 -0,00016 -0,00016 -0,00016 -0,00016 -0,00016 -0,00016 -0,00017 -0,00016 -0,00017 -0,00018 -0,00019 -0,00019 -0,00010 -0,00010 -0,00011 -0,00013 -0,00013 -0,00014 -0,00005 -0,000013 -0,000014 -0,00005 -0,000014 -0,00005 -0,000014	0,00002 0,00005	-0,00001	0,00002	0,00005	0,00008	0,00011	0,00013	0,00016	0,00019						
27.37:1995) a \$r_b b) 0,1114 Je2 mode1 Je2 mode1 mode1 r Je2 mode1 Je2 mode1 Je2 mode1 Je2 mode1 Je2 mode1 Je2 0.0000 Je2 0.0000 Je3 0.0000 Je4 0.0000 Je5 0.0000 Je6 0.0000 Je7 0.0001 Je7 0.0001 Je7 0.0001 Je7 0.0011 Je7 0.0011 Je7 0.00011 Je7 0.00011 Je7 0.00011	-0,00013 -0,00013	-0,00012	-0,00013	-0,00013	-0,00014	-0,00014	-0,00015	-0,00015	00018 -0,00015						
273 273 273 299 3000 2014 462 3000 3000 30015 30015 30015 30015 30015 30015 30015 30015 300015 300015 300015 300015 300005 300015 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 300005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 30000005 3000005 3000005 3000005 3000005 3000005 3000005 30000005 3000005 3000005 3000005 3000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 300000005 30000005 30000005 30000005 300000005 30000005 30000005 300000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 30000005 3000005 30000005 30000005 3000005 3000005 3000005 3000005 3000005 3000005 30000005 30000005 30000005 3000005 3000005 3000005 30000005 30000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 3000005 30000005 30000005 3000000000000000000000000000000000000	-0,00004 -0,00007	-0,00002	-0,00004	10000,0-	-0,00009	-0,00012	-0,00014	-0,00016	-0,00018						
E ON TCY <i>f</i> ₁₄ <i>f</i> ₁₆ <i>f</i> ₁₆ <i>j</i>	0,00013 0,00013	0,00013	_			0,00014		0,00015	0,00015						
3 (BASE f_2b f_2b f/b j_117 m m m m m m m m m m m m m m m m m m m m m <thmmmdddddddddddddddddddddddddddddddddd< th=""><th>251484 251484</th><th>251484</th><th>251484</th><th>251484</th><th>251484</th><th>251484</th><th>251484</th><th>251484</th><th>251484</th></thmmmdddddddddddddddddddddddddddddddddd<>	251484 251484	251484	251484	251484	251484	251484	251484	251484	251484						
Direction f_{1b} f_{1b} f_{1b} f_{1b} (Hz) (Hz) (Hz) $0, 34$ $0, 34$ $0, 34$ $0, 34$ $0, 34$ $0, 32657$ 32657 32657 32657 32657 32657 32657 32657 32657 32657 32657 32657 32697 32657 47933 1 41913 1 44929 1 44260 1 44260 1 44260 55115 527515 55173 55783 55173 55783 55433 554945 556977 556977 556977 5564911	56966 57424	56491	56966	57424	57865	58292	1 1	59105	59494						
To BUI v (D) v (D) 0,54 <i>W</i> _{ttc} (t) 11948 11536 15959 17744 17744 18084 17745 17745 17745 17745 17745 17745 17745 17745 18958 18955 19857 198587 198587 198958 198587 198587 198588 198587 198587 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 198588 <	20841 21009	20668	20841	21009	21170	21326	21478	21624	21766						
EFFECT v (B) v (B) v (B) v (B) v (A) 0,53 0,53 0,548 0,444 0,444 0,444 0,444 0,443 0,443 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,424 0,424 0,424 0,424 0,424 0,426 0,427 0,	0,40 0,40	0,41	0,40	0,40	0,40	0,40	0,40	0,40	0,39						
7 7 1,37 1,37 K 1 ,101 1,111 1,111 1,111 1,126 1,1,218 1,1,218 1,1,218 1,1,218 1,1,218 1,1,326 1,329 1,339 1,331 1,331 1,332 1,332 1,332 1,331 1,332 1,440 1,440 1,444 1,444	1,45 1,46	1,44	1,45	1,46	1,47	1,48	1,50	1,51	1,52						
C(0) C(1) C(0) 1,40 (m) 2 (m) 3,6 2 7,2 11,40 11,40 21,52 25,2 23,66 21,66 21,66 21,66 33,60 336,0 336,6 44,3 55,0,4 64,48 68,4 68,4 68,4 68,4 72,0 72,0	79,2 82,8	75,6	79,2	82,8	86,4	90,0	93,6	97,2	100,8						
Dimensions C(a) C Dimensions Dimensions C 1,40 1,4 1,4 1,40 1,4 1,4 1,0 82,0 3 0,0 82,0 1 0,0 82,0 14 0,0 82,0 14 0,0 82,0 13 0,0 82,0 13 0,0 82,0 21 0,0 82,0 23 0,0 82,0 33 0,0 82,0 36 0,0 82,0 36 0,0 82,0 36 0,0 82,0 36 0,0 82,0 36 0,0 82,0 51 0,0 82,0 64 0,0 82,0 64 0,0 82,0 64 0,0 82,0 64 0,0 82,0 64 0,0 82,0	82,0 82,0	82,0	82,0	82,0	82,0	82,0		82,0	82,0						
S CALC Terrai n n B B B B Dime 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0	30,0 30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0						
RESULT SALCULATED NIND LOADS EFFECT TO BILLIDING 3 (BASE ON TXINUN V C T T T V C C C T T T T T T T T T <th colspan="6" t<<="" th=""><th></th><th></th><th>1</th><th>1 1</th><th>1 </th><th>1</th><th>1</th><th> </th><th></th></th>	<th></th> <th></th> <th>1</th> <th>1 1</th> <th>1 </th> <th>1</th> <th>1</th> <th> </th> <th></th>								1	1 1	1	1	1		

Journal of Building Science and Technology - No.1/2023