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Abstract: In this paper, the free vibration of two-
dimensional functionally graded (2D-FG) sandwich
nanobeam is investigated by the finite element
method. The material properties of 2D-FG sandwich
nanobeam are assumed to vary in both axial and
thickness directions according to a power law. Based
on Eringen's nonlocal elasticity theory, the governing
equations of motion are derived. A parametric study
has been carried out to show the effect of material
distribution, nonlocal effect, on the natural
frequencies of the beams. The finite element method
is employed to establish the equations and compute
the vibration characteristics of the beam.
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Toém tat: Trong bai béo nay, dao déng tw do cla
dédm nano sandwich cé co tinh bién thién hai chiéu
duoc nghién ciéu bang phuong phép phén t& hiu
han. Tinh chét vét liéu cda ddm bién déi theo chiéu
doc va chiéu cao cia dadm bang quy lut sé md.
Phuwong trinh chuyén déng cda dam duoc thiét 1ap
dua trén ly thuyét dan héi khéng dia phuong. Anh
hwéng cta cac tham sé vat liéu, tham sé khéng dia
phuong, tisé cia cac 16p sandwich cta ddm dén tén
sé cla dam ciing dwoc chi ra. Phuong trinh phén ti
hitu han duwoc thiét 1ap dé tinh toén déc trung dao
dong cua dam.

Tw khéa: co tinh bién thién hai chiéu, ddm nano,
moé hinh khéng dja phwong, dao dong tw do, phuong
phap phan t hitu han, ddm sandwich.

1. Introduction

Sandwich beams are widely used in the
aerospace industry as well as in other industries due
to their high stiffness to weight ratio. Functionally

graded materials (FGMs), initiated by Japanese
scientists in 1984, are employed to fabricate

Tap chi KHCN Xay dung - sé 3/2022

functionally graded sandwich (FGSW) beams to
improve their performance in severe conditions.
Investigations on the mechanical behavior of the
FGSW beams have been recently reported by
several researchers [12,13,14].

The nonlocal field theory, one of the talented
continuum models in nanomechanics considering
size-dependent effects, was first developed by
Eringen [1,2,3]. Most classical continuum theories
are based on hyperelastic constitutive relations which
assume that the stress at a point is functions of strain
at the point. On the other hand, the nonlocal
continuum mechanics assumes that the stress at a
point is a function of strains at all points in the
continuum. By using this theory, the equilibrium
differential and motion equations for nanostructures
can be derived. Several investigations on vibration of
nanobeams have been reported in the literature.
Reddy [4] studied the bending, buckling and vibration
of homogenous nanobeams. A compact generalized
beam theory is used by Aydogdu [5] to analyze the
bending, buckling and vibration of nanobeams.
Simsek and Yurtcu [6] derived analytical solutions for
bending and buckling of FG nanobeams. Based on
the finite element method, Eltaher et al. [7,8] studied
free vibration of FG size-dependent hanobeams. On
the basis of the nonlocal differential constitutive
relations of Eringen, Zemri, Houari, Bousahla and
Tounsi [9] proposed a nonlocal shear deformation
beam theory to study the bending, buckling, and
vibration of FG nanobeams. Rahmani and Pedram
[10] simultaneously studied bending and buckling of
Timoshenko FGM nanobeams using analytical
methods.

In this paper, the free vibration of two-
dimensional functionally graded (2D-FG) sandwich
nanobeams is studied. Timoshenko beam theory
incorporated with nonlocal differential equation of

21


mailto:lethiha@utc.edu.vn

KET CAU - CONG NGHE XAY DUNG

Eringen is used to derive the nonlocal differential
equations of motion and the finite element method
is employed to compute the frequency parameters
of the beam. The effect of nonlocal parameter, FG
power indexes and layer thickness ratio on the

vibration characteristics is examined and

discussed.

2. Problem and formulation

2.1 Grade functionally sandwich nanobeam
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Figure 1. The model of the bi-dimensional FG sandwich nanobeam

Figure 1 shows a bi-dimensional FG sandwich
nanobeam with a length of L. Assuming the
sandwich layers are adhesion-solid and non-slip.
The upper face of the sandwich beam is made of
2D-FG, the lower face is made of ceramic and the
core is made of 1D-FG as shown in Fig. 1. In the
Figure, a Cartesian coordinate system (x, 2z) is

and the z-axis is perpendicular to the mid-plane, and
it is directed upward. The beam cross-section is
assumed to be rectangular with width b and height
h. The beam material is assumed to be formed from
ceramic and metal whose volume fraction varies in
both the thickness and longitudinal directions, the
power law of volume fraction of the ceramic is given

introduced such that the x-axis is on the mid-plane,  as[11]:
3 h.
Vo(x,z)=1 Ze _E’hl
2 Z— h2 " .
VZ(x,2) = ze[h;h,] 1)
h1 - hz
Vcl(x,z)z(l_ij M bA E|:h2,h—:|
2L h—2h, 2
where nz and nx are the grading indexes, which P*(x,2) = P, +(F’C—Pm)VCk (x,2) (3)

dictate the variation of the constituent materials in the
thickness and longitudinal directions, respectively.
V(x,2) (k = 1,2,3) is the volume fraction function of
ceramic material of the k-th layer. Consider the 2D-
FG sandwich nano beam, distributed equally in the
ceramic and metal phases, the modified rule of
mixture can be written as [11]:

P“(x,2) =P, VX + PV} )
the ()c and ()m subscripts respectively denote the
ceramic and metal. The effective material properties

(P) (such as Young’s modulus and mass density,
etc.) for the sandwich nanobeams can be written.
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where Pc, Pm denote the properties of ceramic,
metal, respectively, P denote the effective material
properties of the k-th layer.

2.2 Government Equations

The axial displacement Uand transverse
displacement W at any point based on Timoshenko

beam theory are given t by.
u(x,z,t) =u,(x,t) +z0(x,t),
4
w(X, z,t) = w,(X,t) ®

where Ujand W,are the axial and transverse
displacements at the midplane, and t is the time, 6 is
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the angle of rotation of the cross-section. From there,
we get the strain components:

Hamilton's principle has the form.

9}

[(8U—oT)it=0 (6)

ou_odu, 00
ST T ox x x !
ow ©) where SU and ST are the virtual strain and kinetic
Vo = 6_0+ 0 energies. They can be described as:
X
L
U=| NP 999 o 9OV s | ki @
0 OX OX OX

where N, M, Q are the axial normal force, the bending moment and the shear force, respectively:

h/2 h/2 h/2
N=b [ o,(x2)dz, M=b [ z0,(x2)dz, Q=b [ ko, (x2)dz ®)
—-h/2 -h/2 -h/2
L
NZIPH(GUO 03Uy | Wy aawoj+I (8u 059 , 26U, aej 3 o0 aae}d ©
0 ot ot ot ot ot 8t ot ot ot ot
where 1, |,,, |,,are the mass moments, defined as:
h/2
(1 1y, bj P (X, z) 1 Z,12 )dz (10)

—-h/2

where, pX(x,z) is the mass density of the k-th layer. Substituting Egs. (7), (9) into Eq. (6), we obtained the

following equations of motion:

oN o,
x

0’0 aQ
2527 X

The nonlocal constitute equations for nanobeams can be written in form [1,2]:

GXX
o T

O,
O,,—H 6X2XZ

Where EX(x,z), GX(x,z) are, respectively, the
elastic modulus and shear modulus of the k-th layer;
Y7, =e§a2is a nonlocal parameter; eo is a constant

N = A11 +A12

ou 00
M=A o, o 99
A, ax A, x

aWO
Q=A33( OX

o*w,
|y a2 +

Joof

o’w, . 0*M o, 0’0
11 a2 | o :IlZ a2 +|22 ot (11)
Ek(xv Z)gxx
(12)
=G"(x,2)7,,

associated with each material; a is an internal
characteristic length. Taking the derivative Eq. (11)
and using Egs (5), (12), we obtain:

o°u, 0’0
hy oxot? *he oxot? )’

3%, %0 ]

+1 13
12 axatz 22 axé‘tz ( )

ow,
" oxot?

where A, A, and A,,, A, are respectively the axial, axial-bending coupling and bending rigidities and

shear rigidities. They are defined as:
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(A111A12’ A22)=J-Ek(x, Z)(l,Z,Zz)dA

(14)
Ay, = [K,G¥(x,2)dA
A
Finally, we can obtain the differential equations of motion for the beam in the forms.
”K ddu, 859+Q(6§u0+ 59]}
OX OX
(15)
0 [%85u0+8wo a5w0] 1 (Gu 086, 06U, ae] | aeaae}d ot —
ot ot ot ot a ot a o) Pt at

2.3 Numerical formulation

The finite element method is employed herein to
solve the equations of motion. To this end, the beam
is assumed being divided into a number of two-node
beam elements with a length of I. The vector of nodal
displacements (d) for the element considering the
transverse shear rotation yo as an independent
variable contains six components as:

d={u,w, 6,u, w, 6,} (16)

where U, W, 8,,U,,W,, 6, are the values of uo, Wo
and 6o at the node 1 and at the node 2. In Eq. (16)
and hereafter, a superscript ‘T’ is used to denote the
transpose of a vector or a matrix.

u=N,"d, w,=Nd, =N,"d (@17

where Nu, Nw, Ny denote the matrices of shape
functions for uo, wo, 6, respectively. In this present
work, using linear polynomials to interpolate the axial,
using Kosmatka polynomials to interpolate

transverse displacements and angle rotation. Putting
Eqg. (16) into the variational statement form Eq. (17),

performing integration, the following element
equation is obtained:
(M+M,,)D+KD =0 (18)

where D is the total vector displacement, M

and K are the structural mass and stiffness
matrices assembled from the element mass and
stiffness matrices over the total elements,

respectively; and M, is the nolocal mass over the

total element. When the nonlocal parameter =0,

Eq. (18) returns to the free vibration equation for the
conventional beams. In addition, Eq. (18) leads to an
eigenvalue problem for determining the frequency o
as:

[K-o*(M+M,)|D=0 (19)
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with o is the circular frequency and D is the vibration
amplitude. Eq. (19) leads to an eigenvalue problem,
and its solution can be obtained.

3. Numerical result

Numerical investigations are carried out in this
section to study the effects of the material distribution
(or the power-law indexes) on vibration of the bi-
dimensional imperfect FG sandwich nanobeams. To
this end, a simply supported FG sandwich
nanobeams formed from aluminum (Al), alumina
(Al203) with the material properties (aluminum (Al),
Em = 210 GPa, pm = 7800 kg/m3, v = 0.23, alumina
(Al203), Ec = 390 GPa, p. = 3960 kg/m?, v = 0.3 and
the layer thickness ratio is defined using three
number as (1-1-1), (1-2-1), (2-2-1), (2-1-2) for
example (1-1-1) means the thickness ratio of bottom,
core, and top layers is 1:1:1. The validation of the
derived formulation is necessary to confirm before
computing the vibration characteristics of the beam.
Since there is no data on the vibration of bi-
dimensional FG sandwich nanobeams with the
power-law variations of the material properties as
considered in this present paper, the fundamental
frequency of one-dimensional FG sandwich
nanobeams obtained in this present work are
compared with the data available in the literature. The
beam geometry has the following dimensions: L
(length) = 10000.10° (m), b (width) = 1000.10° (m)
and h=L/20 (thickness). The frequency is normalized
(M) as [7].

A
A=ol? B2 (20)
E.l
where @ is the i th natural frequency of the
nanobeam and:
bh?
A=bh, |=—. (21)
12
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Table 1. Comparison of fundamental frequency parameter for simply supported 1D-FG nanobeams
(nx=0, hi=hz2=-h/2)

n=1 n=5 n=10
M Present [7] Present [7] Present [7
1 6.7794 6.7631 5.6975 5.7256 5.4248 5.4425
2 6.4939 6.4774 5.4576 5.4837 5.1964 5.2126
3 6.2417 6.2251 5.2456 5.2702 4.9945 5.0096
4 6.0168 6.0001 5.0566 5.0797 4.8146 4.8286
5 5.8146 5.7979 4.8866 4.9086 4.6527 4.6656

The validation of the derived formulation is
necessary to confirm before computing the vibration
characteristics of the beam. In Table 1, the
fundamental frequencies parameter of a simply
supported nanobeam with an aspect ratio L/h=20 and
nx=0 obtained in the present paper are compared
with the results by Eltaher et al [7]. A good agreement
can be noted in Table 1, irrespective of the nonlocal
parameter.

The grading index nz versus the fundamental
frequency parameters of the FG sandwich
nanobeams is illustrated in Figure 2 for L/h = 20, 1-1-
1, y=0.10*2 p=0,1.10"? p=0,3.10*2 p=0,5.10"2 As
seen from the figures, for a given value of the
nonlocal parameter, the fundamental frequencies
decrease when the nonlocal parameter p increases,

regardless nx parameter.

Figure 2. The variation of the fundamental frequency parameter with material graduation
for different nonlocality parameters when L/h = 20, 1-1-1

Figure 3 shows the non-dimensional frequency of
simply supported FG sandwich nanobeam for
different values of the FG power indexes when L/h =
20, y=2.10"*2, Itis observed that increasing nx and nz
decrease the frequency parameter of the sandwich
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nanobeams which is because increasing the nz and
nx power indexes decreases the stiffness of the
nanobeams. It is seen that the non-dimensional
frequency of FG nanobeams, decreases with the
increment of the thickness ratio of core.
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Figure 3. Non-dimensional natural frequency parameter of 2D-FGM sandwich nanobeams when L/h=20, p=2.10*?

The effect of the layer thickness ratio on the
frequency parameter can also be seen in Figure 4, it
shows the first frequency parameter of sandwich
nanobeams for different values of the layer thickness
ratio versus the FG (nz) power indexes. Itis observed
that increasing nz decreases the frequency

parameter of the sandwich nanobeams. Itis seen that
the first frequency parameter of FG sandwich
nanobeams decreases with the increment of the layer
thickness ratio value. But the effect of the layer
thickness ratio on the first frequency parameter of the
FG sandwich nanobeam is complicated.

6.2 T T .

6.17

54r

53 L L L
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Figure 4. Aspect nz versus first frequency parameter of 2D-FGM sandwich nanobeams when
L/h=20 and nx=5 (u=2.10"2, p=5.10"*?)

4., Conclusions

The vibration characteristics of 2D-FG sandwich
nanobeams are evaluated. The nonlocal Eringen
model considering the scale effect is taken into
account in the derivation of the equations of motion.
The finite element method is employed to discretize
the model and to compute the fundamental frequency
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parameters. A parametric study has been carried out
to highlight the effect of nonlocal parameters, FG
power indexes and layer thickness ratio on
fundamental frequency parameters of the sandwich
nanobeam. The obtained numerical results show
that, the nonlocal parameter plays an important role
in the frequencies of nanobeam, and the frequencies
decrease with increasing the nonlocal parameter.
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