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Abstract: In this paper, the free vibration of two-

dimensional functionally graded (2D-FG) sandwich 

nanobeam is investigated by the finite element 

method. The material properties of 2D-FG sandwich 

nanobeam are assumed to vary in both axial and 

thickness directions according to a power law. Based 

on Eringen's nonlocal elasticity theory, the governing 

equations of motion are derived. A parametric study 

has been carried out to show the effect of material 

distribution, nonlocal effect, on the natural 

frequencies of the beams. The finite element method 

is employed to establish the equations and compute 

the vibration characteristics of the beam. 

Keywords: two-dimensional functionally graded, 

nanobeams, nonlocal model, free vibration, finite 

element method, sandwich beams. 

Tóm tắt: Trong bài báo này, dao động tự do của 

dầm nano sandwich có cơ tính biến thiên hai chiều 

được nghiên cứu bằng phương pháp phần tử hữu 

hạn. Tính chất vật liệu của dầm biến đổi theo chiều 

dọc và chiều cao của dầm bằng quy luật số mũ. 

Phương trình chuyển động của dầm được thiết lập 

dựa trên lý thuyết đàn hồi không địa phương. Ảnh 

hưởng của các tham số vật liệu, tham số không địa 

phương, tỉ số của các lớp sandwich của dầm đến tần 

số của dầm cũng được chỉ ra. Phương trình phần tử 

hữu hạn được thiết lập để tính toán đặc trưng dao 

động của dầm. 

Từ khóa: cơ tính biến thiên hai chiều, dầm nano, 

mô hình không địa phương, dao động tự do, phương 

pháp phần tử hữu hạn, dầm sandwich. 

1. Introduction  

Sandwich beams are widely used in the 

aerospace industry as well as in other industries due 

to their high stiffness to weight ratio. Functionally 

graded materials (FGMs), initiated by Japanese 

scientists in 1984, are employed to fabricate 

functionally graded sandwich (FGSW) beams to 

improve their performance in severe conditions. 

Investigations on the mechanical behavior of the 

FGSW beams have been recently reported by 

several researchers [12,13,14].  

The nonlocal field theory, one of the talented 

continuum models in nanomechanics considering 

size-dependent effects, was first developed by 

Eringen [1,2,3]. Most classical continuum theories 

are based on hyperelastic constitutive relations which 

assume that the stress at a point is functions of strain 

at the point. On the other hand, the nonlocal 

continuum mechanics assumes that the stress at a 

point is a function of strains at all points in the 

continuum. By using this theory, the equilibrium 

differential and motion equations for nanostructures 

can be derived. Several investigations on vibration of 

nanobeams have been reported in the literature. 

Reddy [4] studied the bending, buckling and vibration 

of homogenous nanobeams. A compact generalized 

beam theory is used by Aydogdu [5] to analyze the 

bending, buckling and vibration of nanobeams. 

Simsek and Yurtcu [6] derived analytical solutions for 

bending and buckling of FG nanobeams. Based on 

the finite element method, Eltaher et al. [7,8] studied 

free vibration of FG size-dependent nanobeams.  On 

the basis of the nonlocal differential constitutive 

relations of Eringen, Zemri, Houari, Bousahla and 

Tounsi [9] proposed a nonlocal shear deformation 

beam theory to study the bending, buckling, and 

vibration of FG nanobeams. Rahmani and Pedram 

[10] simultaneously studied bending and buckling of 

Timoshenko FGM nanobeams using analytical 

methods. 

In this paper, the free vibration of two-

dimensional functionally graded (2D-FG) sandwich 

nanobeams is studied. Timoshenko beam theory 

incorporated with nonlocal differential equation of 
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Eringen is used to derive the nonlocal differential 

equations of motion and the finite element method 

is employed to compute the frequency parameters 

of the beam. The effect of nonlocal parameter, FG 

power indexes and layer thickness ratio on the 

vibration characteristics is examined and 

discussed. 

2.  Problem and formulation 

2.1 Grade functionally sandwich nanobeam

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. The model of the bi-dimensional FG sandwich nanobeam 

 

Figure 1 shows a bi-dimensional FG sandwich 

nanobeam with a length of L. Assuming the 

sandwich layers are adhesion-solid and non-slip. 

The upper face of the sandwich beam is made of 

2D-FG, the lower face is made of ceramic and the 

core is made of 1D-FG as shown in Fig. 1. In the 

Figure, a Cartesian coordinate system (x, z) is 

introduced such that the x-axis is on the mid-plane, 

and the z-axis is perpendicular to the mid-plane, and 

it is directed upward. The beam cross-section is 

assumed to be rectangular with width b and height 

h. The beam material is assumed to be formed from 

ceramic and metal whose volume fraction varies in 

both the thickness and longitudinal directions, the 

power law of volume fraction of the ceramic is given 

as [11]:

 

 

3

1

2 2
1 2

1 2

1 2
2

2

( , ) 1 ;
2

( , ) ;

2( )
( , ) 1 ;

2 2 2

c

nz

c

nznx

c

h
V x z z h

z h
V x z z h h

h h

x z h h
V x z z h

L h h

  
    

 


 
   

 


                

                          (1) 

 

where nz and nx are the grading indexes, which 

dictate the variation of the constituent materials in the 

thickness and longitudinal directions, respectively. 

Vc
k(x,z) (k = 1,2,3) is the volume fraction function of 

ceramic material of the k-th layer. Consider the 2D-

FG sandwich nano beam, distributed equally in the 

ceramic and metal phases, the modified rule of 

mixture can be written as [11]: 

     ( , )k k k

m m c cP x z P V PV                                   (2) 

the ()c and ()m subscripts respectively denote the 

ceramic and metal. The effective material properties 

(P) (such as Young’s modulus and mass density, 

etc.) for the sandwich nanobeams can be written.  

   ( , ) ( ) ( , )k k

m c m cP x z P P P V x z                      (3) 

where Pc, Pm denote the properties of ceramic, 

metal, respectively, Pk denote the effective material 

properties of the k-th layer.  

2.2 Government Equations 

The axial displacement u and transverse 

displacement w  at any point based on Timoshenko 

beam theory are given t by. 
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where 0u and 0w are the axial and transverse 

displacements at the midplane, and t is the time, θ is 

z 
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the angle of rotation of the cross-section. From there, 

we get the strain components: 
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Hamilton's principle has the form. 

        
2

1

0

t

t

U T dt                                         (6) 

where U and T  are the virtual strain and kinetic 

energies. They can be described as:
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where N, M, Q are the axial normal force, the bending moment and the shear force, respectively: 
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where 
11 12 22, ,I I I are the mass moments, defined as: 

   
/2

2

11 12 22

/2

, , ( , ) 1, ,

h

k

h

I I I b x z z z dz


                                       (10) 

where, ρk(x,z) is the mass density of the k-th layer. Substituting Eqs. (7), (9) into Eq. (6), we obtained the 

following equations of motion: 
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The nonlocal constitute equations for nanobeams can be written in form [1,2]: 
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Where Ek(x,z), Gk(x,z) are, respectively, the 

elastic modulus and shear modulus of the k-th layer;  
2 2

0e a  is a nonlocal parameter; e0 is a constant 

associated with each material; a is an internal 

characteristic length. Taking the derivative Eq. (11) 

and using Eqs (5), (12), we obtain: 
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where 11 12,A A  and 22A , 33A  are respectively the axial, axial-bending coupling and bending rigidities and 

shear rigidities. They are defined as: 
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Finally, we can obtain the differential equations of motion for the beam in the forms. 
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2.3 Numerical formulation 

The finite element method is employed herein to 

solve the equations of motion. To this end, the beam 

is assumed being divided into a number of two-node 

beam elements with a length of l. The vector of nodal 

displacements (d) for the element considering the 

transverse shear rotation 0 as an independent 

variable contains six components as: 

 1 1 1 2 2 2, , , , ,u w u w d                  (16) 

where 
1 1 1 2 2 2, , , , ,u w u w  are the values of u0, w0 

and 0 at the node 1 and at the node 2. In Eq. (16) 

and hereafter, a superscript ‘T’ is used to denote the 

transpose of a vector or a matrix. 

0 0, ,T T T

u wu N w N N  d d d         (17) 

where Nu, Nw, N denote the matrices of shape 

functions for u0, w0, , respectively. In this present 

work, using linear polynomials to interpolate the axial, 

using Kosmatka polynomials to interpolate 

transverse displacements and angle rotation. Putting 

Eq. (16) into the variational statement form Eq. (17), 

performing integration, the following element 

equation is obtained: 

            0nl  M M D KD                            (18) 

 where D  is the total vector displacement, M  

and  K  are the structural mass and stiffness 
matrices assembled from the element mass and 
stiffness matrices over the total elements, 

respectively; and nlM  is the nolocal mass over the 

total element. When the nonlocal parameter 0  , 

Eq. (18) returns to the free vibration equation for the 
conventional beams. In addition, Eq. (18) leads to an 

eigenvalue problem for determining the frequency  
as: 

 2 0nl    K M M D                   (19) 

with  is the circular frequency and D  is the vibration 
amplitude. Eq. (19) leads to an eigenvalue problem, 
and its solution can be obtained. 

3. Numerical result 

Numerical investigations are carried out in this 

section to study the effects of the material distribution 

(or the power-law indexes) on vibration of the bi-

dimensional imperfect FG sandwich nanobeams. To 

this end, a simply supported FG sandwich 

nanobeams formed from aluminum (Al), alumina 

(Al2O3) with the material properties (aluminum (Al), 

Em = 210 GPa, ρm = 7800 kg/m3, ν = 0.23, alumina 

(Al2O3), Ec = 390 GPa, ρc = 3960 kg/m3, ν = 0.3 and 

the layer thickness ratio is defined using three 

number as (1-1-1), (1-2-1), (2-2-1), (2-1-2) for 

example (1-1-1) means the thickness ratio of bottom, 

core, and top layers is 1:1:1. The validation of the 

derived formulation is necessary to confirm before 

computing the vibration characteristics of the beam. 

Since there is no data on the vibration of bi-

dimensional FG sandwich nanobeams with the 

power-law variations of the material properties as 

considered in this present paper, the fundamental 

frequency of one-dimensional FG sandwich 

nanobeams obtained in this present work are 

compared with the data available in the literature. The 

beam geometry has the following dimensions: L 

(length) = 10000.10-9
 (m), b (width) = 1000.10-9

 (m) 

and h=L/20 (thickness). The frequency is normalized 

(i) as [7]. 
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where i  is the i th natural frequency of the 

nanobeam and: 
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Table 1. Comparison of fundamental frequency parameter for simply supported 1D-FG nanobeams 
 (nx = 0, h1 = h2 = -h/2) 

            n=1 n=5 n=10 

µ Present [7] Present [7] Present [7] 

1 6.7794 6.7631 5.6975 5.7256 5.4248 5.4425 

2 6.4939 6.4774 5.4576 5.4837 5.1964 5.2126 

3 6.2417 6.2251 5.2456 5.2702 4.9945 5.0096 

4 6.0168 6.0001 5.0566 5.0797 4.8146 4.8286 

5 5.8146 5.7979 4.8866 4.9086 4.6527 4.6656 

The validation of the derived formulation is 

necessary to confirm before computing the vibration 

characteristics of the beam. In Table 1, the 

fundamental frequencies parameter of a simply 

supported nanobeam with an aspect ratio L/h=20 and 

nx=0 obtained in the present paper are compared 

with the results by Eltaher et al [7]. A good agreement 

can be noted in Table 1, irrespective of the nonlocal 

parameter.   

The grading index nz versus the fundamental 

frequency parameters of the FG sandwich 

nanobeams is illustrated in Figure 2 for L/h = 20, 1-1-

1, µ=0.10-12
, µ=0,1.10-12

, µ=0,3.10-12
, µ=0,5.10-12. As 

seen from the figures, for a given value of the 

nonlocal parameter, the fundamental frequencies 

decrease when the nonlocal parameter  increases, 

regardless nx parameter.

 

 
Figure 2. The variation of the fundamental frequency parameter with material graduation 

 for different nonlocality parameters when L/h = 20, 1-1-1 

 

Figure 3 shows the non-dimensional frequency of 

simply supported FG sandwich nanobeam for 

different values of the FG power indexes when L/h = 

20, µ=2.10-12. It is observed that increasing nx and nz 

decrease the frequency parameter of the sandwich 

nanobeams which is because increasing the nz and 

nx power indexes decreases the stiffness of the 

nanobeams. It is seen that the non-dimensional 

frequency of FG nanobeams, decreases with the 

increment of the thickness ratio of core.
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Figure 3. Non-dimensional natural frequency parameter of 2D-FGM sandwich nanobeams when L/h=20, µ=2.10-12 

 

The effect of the layer thickness ratio on the 

frequency parameter can also be seen in Figure 4, it 

shows the first frequency parameter of sandwich 

nanobeams for different values of the layer thickness 

ratio versus the FG (nz) power indexes. It is observed 

that increasing nz decreases the frequency 

parameter of the sandwich nanobeams. It is seen that 

the first frequency parameter of FG sandwich 

nanobeams decreases with the increment of the layer 

thickness ratio value. But the effect of the layer 

thickness ratio on the first frequency parameter of the 

FG sandwich nanobeam is complicated.

  

 
Figure 4. Aspect nz versus first frequency parameter of 2D-FGM sandwich nanobeams when  

L/h=20 and nx=5 (µ=2.10-12, µ=5.10-12) 
 

4. Conclusions 

The vibration characteristics of 2D-FG sandwich 

nanobeams are evaluated. The nonlocal Eringen 

model considering the scale effect is taken into 

account in the derivation of the equations of motion. 

The finite element method is employed to discretize 

the model and to compute the fundamental frequency 

parameters. A parametric study has been carried out 

to highlight the effect of nonlocal parameters, FG 

power indexes and layer thickness ratio on 

fundamental frequency parameters of the sandwich 

nanobeam. The obtained numerical results show 

that, the nonlocal parameter plays an important role 

in the frequencies of nanobeam, and the frequencies 

decrease with increasing the nonlocal parameter. 
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