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Abstract: The paper presents the results of
applying artificial  intelligence  methods in
determining the pile bearing capacity. In this study,
an artificial intelligence model namely random forest
was developed and applied in pile bearing capacity
prediction. The random forest model architecture is
optimized by the grid search technique to find the
best model. A database of 108 destructive
compression results by static pile load method has
been synthesized to train and test the model, in
which geological data is represented by cone
penetration test (CPT) result. In addition, the results
of the study are compared with the multi-variable
regression model and the traditional formula
according to the pile foundation - design standard
TCVN 10304:2014, giving the random forest the
superiority in determining the load capacity
compared to the other two methods. The results of
the study show that the random forest with optimum
parameters can predict very well the pile load
capacity, and has great potential in solving other
problems in construction engineering.

Keywords: pile bearing capacity, CPT result,
artificial intelligence, random forest, multivariable
regression, TCVN10304-2014.

Tém tat: Bai bao trinh bay két qué dng dung
phwong phap tri tué nhan tao trong viéc xac dinh
strc chju téi coc. Trong nghién ciu nay, mét mo
hinh tri tué nhan tao tén la remg ngéu nhién da duoc
phét trién va ¢ng dung trong viéc dw béo surc chju
ti coc. Kién tric md hinh rumg ngdu nhién duwoc téi
wu héa bang céach kho sat 1an lwot timg tham sé dé
tim ra md hinh tét nhat. Mét co s& di liéu gém 108
két qua nén tinh coc da duwoc thu thap dé dao tao va
kiém nghiém mé hinh, trong d6 sé liéu dia chat
duoc dai dién bang két qua xuyén CPT. Két qua
ctia nghién ctu duoc so sanh véi md hinh héi quy
da bién va cong thuc theo TCVN 10304:2014, cho
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thdy mé hinh remg ngdu nghién mang lai dé chinh
xac vuot tréi trong viéc xac dinh sdrc chju tai coc so
V6i hai phuong phép con lai. Két qua cda nghién
ctru cho thdy mé hinh rumg ngdu nhién duoc téi wu
tét c6 khad ndng duw béo rét tét st chju tdi coc, dong
thoi c6 tiém nédng Iém trong viéc gidi quyét cac bai
toan khac trong linh vuc xay dung.

TUr khéa: stre chiu tai coc, chi sé6 CPT, tri tué
nhén tao, rirng ngéu nhién, TCVN10304-2014.

1. Introduction

Pile foundation is a type of deep foundation
commonly used in the construction industry in
general as well as in the field of civil and industrial
construction in particular. Practically in the pile
design process, the bearing capacity of a single pile
plays a decisive role in finding the right pile
foundation solution for the project when it affects the
determination of the number of piles as well as the
size of the foundation cap.

Along with the history of construction, many
different methods have been proposed for
determining load capacity. There are test methods
applied directly in the field such as static load test
method [1], dynamic load test method (PDA), static
load test method using load cell [2]. The above
methods give reliable results, but the disadvantage
is that it is time-consuming and uneconomical. To
reduce testing costs, many authors have proposed
semi-empirical formulas to approximate endurance,
using in situ test results (SPT, CPT)[3] [4] [5], etc.
These methods give quick results, low cost, high
reliability in many cases, however, they are not very
general and the calculation results need to be
corrected with experimental results. Currently, with
the development of the finite element method, many
authors have simulated the working of piles and soil
and approximated the pile load capacity based on
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mathematical modeling software such as Plaxis,
Ansys, Abacus [6] [7]. However, these methods
have the weakness that they have to use many
parameters of soil and inductive characters with the
output results, the accuracy of the analysis results
depends a lot on how these parameters are
adjusted for fit.

In recent years, the results of the fourth
industrial revolution have been strongly imported
into all fields, including the construction sector.
Many researchers are looking for ways to apply
artificial intelligence solutions to solve various
problems in the field of construction in general and
pile design in particular. It is an to be some research
as Pham et al. (2020) [8], Momeni (2020)[9],
Moayedi va Hayati (2019)[10] v.v. However, further
research to expand and improve the accuracy of the
model is needed. Most of the above publications do
not clearly state how to optimize machine-learning
models. In addition, random forest is a powerful
machine learning method, capable of solving many
scientific and engineering problems with fast speed
and resistance to overfitting. Specifically, compared
with other models such as Artificial Neural Network
(ANN), Adaptive Neuro-Fuzzy Inference System
(ANFIS), the random forest model has a faster
training speed. Along with that is the Boostrap
random sampling technique, which helps the model

to generalize the research problem and avoid the
phenomenon of overfitting with the training data
[11], [12].

In this study, the random forest model was used
to predict the bearing capacity of piles based on
static penetration test (CPT) results. The model
hyperparameters are optimized to find the best
model by grid search technique. In addition, the
research results are also compared with different
methods, which are multivariate regression and
experiment formula according to TCVN 10304: 2014
to confirm the superiority of the random forest model
in determining pile bearing capacity. Finally,
importance analysis technique is performed to find
out which input variables have the greatest influence
on the results of determining the bearing capacity of
piles.

2. Development of the Random Forest model
2.1 Random Forest model

The random forest (RF) model is one of the
most popular machine-learning methods based on
the decision trees model. Forests and Breiman
(1999)[13] were the first persons who mention the
random forest model, also known as bagging
ensemble learning. The typical Decision tree and RF
model are illustrated in Figure 1 and Figure 2.

Figure 1. Visualize the decision tree model for the regression problem

In the decision tree model, the data is
modeled like a tree consisting of branches and
leaves. The different instances of the input data
(eg X1, X2, X3, etc) are split by branches and the
output is at the leaf position (eg R;, Rz, Rs, etc).
More specifically, the architecture of the
decision tree model can be considered as a

series of if_then_else functions, depending on
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the input data set, the complexity of the tree as
well as the depth of the if the function is
optimized. The
decision tree model has the major disadvantage
overfitting the input That
promotes the development of more advanced
models based on decision trees, the random
forest model is one of them.

calculated and individual

of often data.
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In the RF model, a forest of many decision trees
is predefined for training and forecasting. Each tree
decision maker is an individual with the exclusive
set of forecasting, taking input from a partial data
root. The final result of the prediction of the random
forest is the average result of the member trees.
The interesting point of the random forest model is
that the trees are built completely randomly, with the
input data of each tree selected according to the
bootstrap technique. That will help the model to
better generalize the problem and limit the
overfitting of individual decision tree models.

The important hyperparameters influences on
the model building are: (1) - Number of trees in the
forest (n); (2) - Maximum Depth of a tree (D); (3) -

Minimum number of samples needed to separate
plants (S) and (4) - Minimum number of samples per
leaf (L).

The final prediction of the model can be made
using the following formula (1):

yizlzfj(xi) (1)
n j=1

In which, vy, is the result of predicting the it
sample; n is the number of trees; f; is the estimator
i™ in the forest; x; - the input vector data on the i
sample. How to build decision trees and
hyperparameters of random forest can be found in

more detail in the literature [13].

Max depth

‘ Decision tree 1 |

‘ Decision tree 2 ‘

Decision tree n

Figure 2. Random forest model visualization

2.2 ldentification and collection of data

The data used to build and test the model
should be collected from various sources to
increase the generality of the model. Specifically, a
dataset of 108 static pile load tests is compiled and
published in the literature of Ghorbani (2018)[14].
This dataset consists of different types of piles,
tested with different geological conditions in areas
around the world. Therefore, the dataset is highly
generalizable and is not localized to a particular
locality. All input parameters that can affect the pile
load determination are taken according to the input
variables in the empirical formula according to
Vietnamese national standard TCVN 10304-2014.
To be more specific, they are the type of test (T), the
type of pile (P), the installation method (denoted as
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1), end of pile type (EP), the pile tip cross-sectional
area (At ), the shaft area (Af ). The soil properties

were shown through parameters obtained from
Cone Penetration Test (CPT) results, include the
average cone tip resistance along the embedded

length of the pile (qca), the average cone tip

resistance over influence zone (th)’ the average
sleeve friction along the embedded length of the pile
(fsa). The considered output is the ultimate bearing

capacity of the pile (denoted as Pu ).

The data is divided into two sets: the training set
for 80% and the test set for 20% of the total data.
Where the training set is used to build the model
and testing set is used to evaluate the model. Unlike
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Ghorbani's study[14] which initially used only 5 9 input parameters. The statistics of the input data
i i i are shown in Table 1.
inputs (At, Af, Ocar Ogs fsa), this study will use all
Table 1. Statistics of input and output parameter information of the current study
™ PO O Ep") Ad A Jea fsa Get Py
(Mpa (Mpa
Unit - - - - (cm? (m?) ) (kN) ) (kN)
Min 1 1 1 1 20 5.45 0.83 9.39 0.25 60
101.8
Mean - - - - 1736 26.46 5.84 9 8.82 1965
Median 2 1 2 1 1230 17.98 5.38 81.91 7.63 1340
194.6 349.6 27.1
Max 2 3 2 2 7854 5 24.7 4 1 10910
SD - - - - 1674 26.35 4.23 66.29 6.19 1702.2
SD = Standard deviation
T = 1 — Continuous load, 2 — Maintain load; P = 1 — Concrete pile, 2 — Composite pile, 3 — Steel pile; | = 1 —
Driven pile, 2 — Bored pile; EP = 1 — closed pile, 2 — Open pile.
2.3 Model validation R® characterizes the correlation between

In this study, performance indicators including
R-squared (Rz), and root mean square error
(RMSE) are used to evaluate and compare models,
specifically as follows:

experimental results and predictions while RMSE

characterizes the error between experimental

results and predictions. In the ideal case, R?

- reaches 1 while RMSE reaches 0.

awse= (35,3

(2)  3.Result and discussion
i=1
i( . 3.1 Model optimization results
yi - yi )
RZ = 1. In this work, the RF model is built based on the
©) Python platform, using the Sklearn library. In

>(y,-y)

o addition, the most important hyperparameters of the

In which, k is the number of samples, yi and )_,i model are examined in turn to choose the best value

is the experiment, and predicted result, y is the within their allowable range. Specifically, the survey

mean value of y, . scope is given in Table 2.

Table 2. Range of hyperparameters

Hyper parameter Explain Range
n Number of trees 2-100
D Max depth 2-20
S Min samples to split 2-20
L Min samples on a leaf 1-20

According to many studies, the maximum  changes beyond the survey range, the performance

number of trees does not need to be too much [13].  of the model does not change significantly.

Meanwhile, other hyperparameters such as D, S, L That fits

excessively with training data and does not predict
well for testing the data. To avoid data leakage, the
5 Fold CV techniqgue was used to evaluate the

is when the model the model

determine the complexity of the decision trees. It is
important to note that, the more complex the

decision tree, the more overfitting the model.

Besides, the survey range of other hyperparameters
is selected so that when the hyperparameter value
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model's performance during the survey. According
to this technique, the training set is divided into 5
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folds, with 4 folds used for training and the
remaining fold used for validation.
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3.1.1. Effect of Number of trees on performance of
Random Forest models
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Figure 3. Result of the model survey according to n

3.1.2. Effect of Max depth of tree on performance of
Random Forest models

The results of the survey on the accuracy of the
model when the max depth of tree (D) changes from
2 to 20, n = 40 are shown in Figure 4. It can be seen
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that the best value of the max depth is 9, then,
R? =0.773 while RMSE = 722 (kN). Tree depth
less than 6 gives very bad prediction results while
tree depth greater than 6 does not improve the
results much.

1200

1000 %,
z

X800 | Seow_s L.

2 600
14
400

200

2 4 6 8 10 12 14 16 18 20
D

Figure 4. Result of the model survey according to D

3.1.3 Effect of Min samples to split of tree on
performance of Random Forest models

The results of the survey on the accuracy of
the model when min samples to split of tree (S)
changes from 2 to 20, n = 40, D =9 are shown
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in Figure 5. It can be seen that the bigger min
samples to split of tree the value, the lower
performance of the model, and the best value of
S is 2, then, R2 = 0.773 while RMSE = 722
(kN).
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Figure 5. Result of the model survey according to S

3.1.4 Effect of Min samples on a leaf of tree on
performance of Random Forest models
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The results of the survey on the accuracy of the
model when Min samples on a leaf of tree (L)
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changes from 1 to 20, n = 40, D =9, S = 2 are shown
in Figure 6. It can be seen that when L is less than 8,
the larger L is, the better the prediction result, but
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conversely, when L is greater than 8, the larger L is,
the worse the result. Thus, the best value of L is 8,

then, R? = 0.859while RMSE = 568 (kN).
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Figure 6. Result of the model survey according to L

In general, the best model among the survey
models has the number of treesn =40, D=9, S =
2, and L = 8. With such valuable parameters, the
model is good enough to learn the generality of the
data, and at the same time not too complicated to
help the model avoid overfitting.

3.2 Compare to different methods

In this section, the results of predicting the
capacity of the random forest model with the
optimization of the parameters, are compared with
the bearing capacity according to the Vietnamese
national standard TCVN 10304-2014[15] and the
multivariable regression. Result prediction is
performed on testing data.

With multivariable regression, the determination
system is performed on the Data Analysis tool of
EXCEL 2016 software, the multivariable regression
weights and bias are determined based on the

training set. Multivariable regression weight and bias
are showed in table 3.

The general formula of the linear multivariable
regression method is as formula (4):

9
P, = ZBi'Xi +Bo (4)
i1

In which, B, is the weight refers to i input X

and [3, is the bias.

In addition, the formula for calculating the
bearing capacity according to the results of the
static penetration test according to national standard
TCVN 10304 is as formula (5):

P =k, g A, +Jea 5)
Q;
In which, k. and a; the coefficient of the cone
tip resistance and sleeve friction resistance, see
table G2 TCVN 10304: 2014.

Table 3. Weights and bias value of multivariable regression

Coefficient T P | Ep

At As Qca fsa et Bo

Value -2277 -23,5 104,6 181,7

0,3 45,8 60,5 3,7 52 3226,3

The results of the calculation methods can be seen in Figure 7.
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Figure 7. The comparison of the three methods on the testing set

Tap chi KHCN Xay dung - sb 1/2022

63



DIA KY THUAT - TRAC DIA

Table 4. Model performance based on three methods

Method
Criteria TCVN
RF model MVR 10304-2014
R® 0.921 0.948 0.82
RMSE (kN) 425 856.32 1287

The results of pile bearing capacity analysis by 3
methods: RF, TCVN 10304, and multivariable
regulation showed that the RF model is the best
model with R? = 0.92 and RMSE = 425 (kN). The
multivariate regression model gives quite good
results with R? = 0.948, however, the RMSE value is
very high, reaching 856.32 (kN). It proves that the
model predicts the correlation results well, but the
root means the squared error is too high due to the
difference between the prediction and the
experiment error. Finally, the pile bearing capacity
determined by the formula in TCVN10304:2014
achieved the lowest accuracy with R? = 0.82 and
RMSE = 1287 (kN).

3.3 Features importance analysis

In this section, the importance of input features
was analyzed. Since the RF model randomly selects
features to build decision trees, feature importance
is determined by the percentage increase in error

0.70

(% increase in MSE) of the model, when that feature
is unused. Features' importance can be measured
through the importance index, which is in the range
[0,1] and the sum of all feature' indexes is equal to
1. The larger the index, the more important the
features. The features importance analysis result is
presented in . It can be seen that of all the variables
used to build the RF model, the pile tip cross-
sectional area (A, had the highest importance, with
an important score of 0.587. The shaft area (A;) was
the next important input variable when the
importance score is 0.319. Thus, the parameters
that characterize the pile geometry showed great
importance in predicting the pile bearing capacity.
The variables that were characteristic of background
attributes such as q, Jea, fsa @chieved 3rd, 4th, 5th
ranks in importance, respectively. The type of pile
tip (EP) played a less important role while the
remaining variables such as T, I, P had almost no
influence on the prediction of pile load capacity.
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Figure 8. The feature important analysis result

4. Conclusions

The present study applied a random forest
model, based on artificial intelligence to determine
the bearing capacity of piles. The research results
show that it is necessary to optimize the parameters
so that the model random forest achieves high
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accuracy when predicting the ultimate bearing
capacity of the pile. Specifically, the number of trees
around the value 40, the depth of tree greater than
6, the number of samples required to split a node as
small as possible, and the number of nodes per leaf
should not exceed 8. In addition, the RF model
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allowed to outperform the two models included for
comparison, the multivariable regression model and
the formula for determining the load capacity
according to the national standards TCVN 10304-
2014. The feature importance analysis technique
performed on the final RF model showed that the
parameters related to the geometrical dimensions of
the pile seem to be of greater importance than those
related to the soil properties. Based on computing, it
is recommended that artificial intelligence models be
introduced into the standard foundation. At the same
time, continue to calibrate the formulas in the
standard to achieve higher accuracy in design
practice.
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